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Abstract

First of all, note that we’re only reading 8.1 through p. 626
(up to Isomorphic Boolean Algebras).

A Boolean algebra (named after George Boole) is a generaliza-
tion of both the propositional logic and the set theory we studied
earlier this term. We are going to focus on using it to under-
stand the basic elements of (computer) logic1, however, which
is based on a binary (0,1) alphabet.

In this first section we are introduced to the fundamental
concepts of Boolean algebra.

1 Definition and Terminology

Definition: a Boolean Algebra is a set B on which are defined two
binary operations + and ·, and one unary operation ′, and in which there
are two distinct elements 0 and 1 such that the following properties hold
for all x, y, z ∈ B:

1a. x + y = y + x 1b. x · y = y · x commutative property
2a. (x + y) + z = x + (y + z) 2b. (x · y) · z = x · (y · z) associative property
3a. x + (y · z) = (x + y) · (x + z) 3b. x · (y + z) = (x · y) + (x · z) distributive property
4a. x + 0 = x 4b. x · 1 = x identity property
5a. x + x′ = 1 5b. x · x′ = 0 complement property

The element x′ is called the complement of x. The algebra may be
denoted [B, +, ·,′ , 0, 1].

Of these properties, certainly the distributive property 3a. may seem
the strangest, since it obviously doesn’t hold for the usual suspects +
and ·. However these aren’t the usual suspects!

1“I am now about to set seriously to work upon preparing for the press an
account of my theory of Logic and Probabilities which in its present state I look
upon as the most valuable if not the only valuable contribution that I have made
or am likely to make to Science and the thing by which I would desire if at all
to be remembered hereafter....” George Boole. “Boole’s work has to be seen as a
fundamental step in today’s computer revolution.” (from his bio)

https://mathshistory.st-andrews.ac.uk/Biographies/Boole/


Notice the beautiful symmetry (or duality) in this definition: the
roles of + and · are exactly reversed, as are the special elements 0 and
1.

Question: how are these reflected in the properties of propositional
logic that we studied earlier this term? In set theory?

A change in notation: Speaking of propositional logic, as we move
forward one change that makes sense is to switch to thinking of truth
functions, instead of wffs:

f : {T, F}n → {T, F}

The function f take elements of the Cartisian product {T, F}n into the
set {T, F}. We’re doing algebra, after all, so it seems reasonable that
we’ll want to operate on variables with functions.

So we’ll want to think of implication, for example, as a function of
two variables (wffs) of the form f : {T, F}2 → {T, F}. If we wrote out
the truth table, there would be four rows for the domain (all ordered
pairs of T, F), and the range values would be in the right column.

A B A −→ B

T T T
T F F
F T T
F F T

Furthermore, we’ll want to replace “T” and “F” with 1 and 0 from
here on out.

There’s an advantage to the function notation: we can speak of two
functions being equal (=), to mean that their corresponding wffs are
equivalent ( ⇐⇒ ). Equality is a little easier to throw around....

In Example 2, p. 621, which illustrates the world’s simplest Boolean
Algebra, the set B = {0, 1} consists of only two elements (so they must
be our distinguished elements), and the binary operations of + and ·
are given by x+ y = max(x, y) and by x · y = min(x, y). Complements
are given by 0′ = 1 and 1′ = 0.

Example: Practice 1, p. 621 : Verify property 4b for the Boolean
algebra of Example 2.

1.1 Idempotence

Curiously enough, x + x = x in a Boolean algebra (this is the idem-
potent property. You’ll want to remember that one, for any proofs!)
And since x+x = x, we must have x ·x = x by the beautiful symmetry
of the operations. This symmetry, which you have already encountered
as duality, means that we only have to do half the work most of the
time (or that we oftentimes get something for free!).



You may have bumped into the notion of idempotence in linear algebra:
for example, projection matrices are idempotent, such as

A =







1 0 0
0 1 0
0 0 0







This matrix projects three-dimensional space onto the first and sec-
ond dimensions; and projecting onto those dimensions a second time
doesn’t change anything (i.e., A · A = A). (What’s the shadow of a
shadow?) However, in a Boolean algebra, this property is true for
every element!

Example: Practice 2, p. 624
a. What does the idempotent property become in the context of

propositional logic?

b. What does it become in the context of set theory?

c. Let’s prove the dual property x · x = x. We get it for free by
duality (but we can prove it, of course, using one of my favorite
tricks in the book).

Example: Practice 3, p. 624 (universal bound property)

a. Prove that the property x + 1 = 1 holds in any Boolean algebra.
Give a reason for each step.

b. What is the dual property?

1.2 Complements are Unique

Given an element x of the set B of a Boolean algebra, the complement
x′ is the unique element of B with the property that

x + x′ = 1 and x · x′ = 0

Furthermore, if you ever find an element a such that

x + a = 1 and x · a = 0

then a = x′.



The proof is on p. 625. The author summarizes this by saying “if
it walks like a duck, and it quacks like a duck, it must be a duck.”

2 Hints for proving Boolean Algebra Equal-

ities (p. 624)

• Usually the best approach is to start with the more complicated
expression and try to show that it reduces to the simpler expres-
sion via the axioms of the Boolean algebra.

• It may help to frame the argument in terms of either set theory
or propositional logic, to give you a framework for understanding
the thrust of the argument.

• Think of adding some form of 0 (like x·x′) or multiplying by some
form of 1 (like x + x′). [These are my among my favorite tricks
in mathematics!]

• Don’t forget property 3a, the distributive property of addition
over multiplication (just because it seems weird).

• Remember the idempotent properties: x + x = x and x · x = x.

• Remember the uniqueness of complements.

3 Examples

Example: Exercise 8, p. 633 : Prove De Morgan’s Laws for any
Boolean algebra, e.g.

(x + y)′ = x′ · y′



Example: Exercise 14, p. 634 : Prove that in any Boolean algebra

x · y′ = 0 ⇐⇒ x · y = x

Example: Exercise 16a, p. 634 : Prove that in any Boolean algebra

x + y = 0 → (x = 0 ∧ y = 0)

4 One last cool thing...

This section ends “in the weeds” a bit, but the upshot is really inter-
esting: the characterization of all finite Boolean algebras. It turns out
that every finite Boolean algebra is of order (size) 2n. Can you think
of a finite Boolean algebra with 2n elements?2

Then it turns out that every finite Boolean algebra is isomorphic to
every other finite Boolean algebra of the same order. The power... of
the Power set!

Example 2, p. 621, reprise: illustrating the world’s simplest Boolean
Algebra. This algebra must be isormorphic to the Boolean algebra
created by a set of one element, whose power set has two elements: the
empty set and the set itself. As usual, set union and intersection (∪
and ∩) serve as the operations of · and +.

The empty set will serve as “0”, whereas the set itself serves as “1”.
Complements are given by 0’=1 and 1’=0, of course!

2Subsets of a set S of order n, with intersection and union, and special elements
S and ⊘.
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