
Sections 3.2: Recurrence Relations

February 10, 2020

Abstract

Recurrence relations are defined recursively, and solutions
can sometimes be given in “closed-form” (that is, without re-
course to the recursive definition). We will solve one type of
linear recurrence relation to give a general closed-form solution,
the solution being verified by induction.

We’ll be getting some practice with summation notation in
this section. Have you seen it before?

1 Solving Recurrence Relations

Vocabulary:

• linear recurrence relation: S(n) depends linearly on previous
S(r), r < n:

S(n) = f1(n)S(n − 1) + · · ·+ fk(n)S(n − k) + g(n)

That means no powers on S(r), or any other functions operat-
ing on S(r). The relation is called homogeneous if g(n) = 0.
(Both Fibonacci and factorial are examples of homogeneous linear
recurrence relations.)

• first-order: S(n) depends only on S(n − 1), and not previous
terms. (Factorial is first-order, while Fibonacci is second-order,
depending on the two previous terms.)

• constant coefficient: In the linear recurrence relation, when
the coefficients of previous terms are constants. (Fibonacci is
constant coefficient; factorial is not.)

• closed-form solution: S(n) is given by a formula which is sim-
ply a function of n, rather than a recursive definition of itself.
(Both Fibonacci and factorial have closed-form solutions.)



The author suggests an “expand, guess, verify” method for solving
recurrence relations.

Example: The story of T

(a) Practice 1, p. 159 (from the previous section):

T (1) = 1
T (n) = T (n − 1) + 3, for n ≥ 2

(b) Practice 9, p. 168: Here is the recurrence relation for Example 11, p. 130, in lisp:

(defun Tee(n)

(if (integerp n)

(cond

((>= n 2)

(+ (Tee (- n 1)) 3)

)

((= n 1)

1

)

(t (error "Tilt! Only positive ints allowed in function tee..."))

)

(error "Tilt! Only positive integers allowed in function tee...")

)

)

> (tee 2)

4

> (mapcar #’tee (iseq 1 10))

(1 4 7 10 13 16 19 22 25 28)

(c) Practice 11, p. 181

Example: general linear first-order recurrence relations with constant
coefficients.

S(1) = a
S(n) = cS(n − 1) + g(n), n ∈ {2, 3, 4, . . .}

“Expand, guess, verify” (then prove by induction!):

S(n) = cn−1S(1) +
n∑

i=2

cn−ig(i)

Now check that it works for T (n) from above.

http://www.nku.edu/~longa/classes/mat385_resources/lsp/index.html#recurse


2 Counting Using Recurrence Relations

Algorithm BinarySearch (which is discussed in the previous section) is
recursive: it calls itself. Starting from a list of length n it makes one
comparison and then calls itself with a list of half its initial length.
Hence the number of comparisons for the list of length n, C(n), would
be (in the worst case)

C(n) = C(floor(n/2)) + 1 :

that is, you’d need to check the middle element, then do a binary search
of the sorted list to the left or right, of half the length (or so) of the
original list. For a list of length 1, we have our base case: C(1) = 1.

That floor function in the inductive step is a pain, but is necessary
since n may be odd.

Forgetting the floor for the moment, use the “expand, guess, and
verify” approach: in the worst-case scenario, the algorithm will find the
element (or not) on its last check (when it’s down to a list of length 1).

C(n) = C(n/2) + 1 = (C(n/4) + 1) + 1 = ((C(n/8) + 1) + 1) + 1 = ...

Obviously this is only going to work easily (in the sense that C(n/8),
etc., make sense) if n is a power of 2. Assume therefore that n = 2m,
for integer m. This allows us to throw away the floor function, and
makes all quotients reasonable.

Before we begin, can you guess how many comparisons we make in the
worst case, for C(n)?

Let’s consider a change of variable. First of all, we replace n by 2m:

C(2m) = C(2m/2) + 1 = C(2m−1) + 1.

Then we define T (m) = C(2m) (think of T as a composition of func-
tions, C(x) and 2x); hence

T (m) = T (m − 1) + 1

Note that T (0) = C(1) = 1. We can solve easily to get a closed-form
solution:

T (m) = m + 1

Let’s now re-express that in terms of C and n. Since n = 2m, we can
equally well write m = log2(n). Hence, C(n) = C(2m) = T (m) =
m+1 = log2(n)+1. This compares quite favorably with the worst-case
estimate from SequentialSearch, which would be n (linear in n).

(For those of you who’ve forgotten, the log function grows much more
slowly than a linear function does.)

http://en.wikipedia.org/wiki/Floor_and_ceiling_functions


Let’s look at the general recurrence relation of the “divide and conquer”
variety: given

S(1) = a
S(n) = cS(n/2) + g(n)

Assume n = 2m for some integer m. Then

S(20) = a
S(2m) = cS(2m−1) + g(2m)

Now we perform the change of variables: let T (m) = S(2m), so that

T (0) = a
T (m) = cT (m − 1) + g(2m)

Using formula (8), p. 183, we get

T (m) = cm−1T (1) +
m∑

i=2

cm−ig(2i)

Then reindexing, since we start with 0 rather than 1, we get

T (m) = cmT (0) +
m∑

i=1

cm−ig(2i)

Finally, substituting back in S and n, we get

S(n) = clog
2

na +
log

2
n∑

i=1

clog
2

n−ig(2i)

Whew!

Example: Exercise #46, p. 202 (using variable S rather than
the T that they used)

S(1) = 3
S(n) = S(n

2
) + n for n ≥ 2, n = 2m


	Solving Recurrence Relations
	Counting Using Recurrence Relations

