
Section 6.1: Graphs and Their
Representations

March 1, 2021

Abstract

In this section we are introduced to basic graph definitions
and terminology, various kinds of graphs, characteristic features
of graphs, and even a few theorems about graphs (for example,
we learn when two graphs are the same, or isomorphic, even
when they look strikingly different).

We then take a look at planar graphs (in particular at Euler’s
formula), and computer representations of graphs (adjacency
matrices, adjacency lists).

1 Definitions

A graph is defined loosely as a set of nodes, and a set of arcs which
connect some of the nodes.

More formally, we have the following

Definition: a graph is an ordered triple (N,A, g) where

N = a nonempty set of nodes, or vertices
A = a set of arcs, or edges
g = a function associating each arc a with an unordered pair {x,y} of nodes, endpoints of the arc.

g is a function g : A → {{x, y}|x ∈ N and y ∈ N}.

Example: Practice #1, p. 478.

Definition: a directed graph is an ordered triple (N,A, g) where

N = a nonempty set of nodes, or vertices
A = a set of arcs, or edges
g = a function associating each arc a with an ordered pair (x,y) of nodes.



so g is a function g : A → {(x, y)|x ∈ N and y ∈ N}.

Example: Exercise #1, p. 498.

2 Examples of graphs in action (p. 479-

481)

• Road map of Arizona

• Ozone Molecule

• “data flow diagram” for state auto licensing office

• “star topology” for network

• neural network

• Map of Rabies-infected towns in Connecticut

• Graphs of functions from calculus – Descarte’s big idea.

3 Graph Terminology

Ordinarily I have my students take a moment to draw a graph – an ob-
ject consistent with the above definition(s). We then use a graph terminology handout
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to classify the graphs. In particular the vocabulary we want to focus
on is as follows:

• degree of a vertex – number of incident edges

• adjacent vertices – an edge connects two vertices

• parallel edges – multiple edges connect two vertices

• loop – an edge connects a vertex to itself

• simple – no parallel edges or loops

• complete – simple graph, with every pair of vertices adjacent

• path – sequences of edges from an initial to a terminal vertex

• cycle – a path with initial and terminal vertices the same (no
other node repeats)

• reachable – a vertex is reachable from another if a path exists
between them.

• connected graph – every vertex is reachable from any other

Example: Exercise #2, p. 498.

4 Special Graphs

By Kn we will understand the simple, complete graph with n nodes.

Example: Exercise #5, p. 498. Draw K6, emphasizing symmetry
(a very important and too-little-emphasized concept in mathematics).
How many edges does it have? How many edges does Kn have?



A bipartite complete graph Km,n is a graph of N nodes which break
into two groups, N1 and N2, of size m and n respectively, with the
property that two nodes x and y are adjacent ⇐⇒ x ∈ N1 and
y ∈ N2.

Example: Exercise #6, p. 498: Draw K3,4. How many edges does
Km,n have?

5 Isomorphic Graphs

The idea of isomorphism is that two structures can be “morphed” into
each other (they are in some sense identical, up to labelling). Our
objective, in general, is to figure out the “morphism” (isomorphism -
same form!).

Example: Look at Figure 6.17, p. 485: can you “morph” the two
graphs together?

Definition: Two graphs (N1, A1, g1) and (N2, A2, g2) are isomorphic
if there are bijections (one-to-one and onto mappings) f1 : N1 → N2

and f2 : A1 → A2 such that for each arc a ∈ A1,

g1(a) = {x, y} ⇐⇒ g2[f2(a)] = {f1(x), f1(y)}

(replace braces by parentheses for a directed graph). We can think of
the mappings f1 and f2 as “relabelling functions”. The nodes and arcs
are relabelled, preserving all the connectivity of the original graph.



Example: Practice #7, p. 486. If you managed to morph the two
graphs in Figure 6.17, then you should be able to “see” the rest of
function f2.

Theorem: Two simple graphs (N1, A1, g1) and (N2, A2, g2) are isomor-
phic if there is a bijection f : N1 → N2 such that for any nodes ni and
nj of N1, ni and nj are adjacent ⇐⇒ f(ni) and f(nj) are adjacent.

Example: Exercise #17, p. 501: the Pentagram.

Here are some tests for determining when two graphs are not isomor-
phic:
(I) The graphs don’t have the same number of nodes.

(II) The graphs don’t have the same number of arcs.

(III) One graph is connected and the other isn’t.

(IV) One graph has a node of degree k and the other doesn’t.

(V) One graph has parallel arcs and the other doesn’t.

(VI) One graph has loops and the other doesn’t.

(VII) One graph has cycles and the other doesn’t.

This list is not complete, however: sometimes things get trickier than
this (as shown in Example 12, p. 487).

Example: Exercise #14, p. 500.



6 Planar Graphs

A planar graph is one which can be drawn in two-dimensions so that
its arcs intersect only in nodes. “Designers of integrated circuits want
all components in one layer of a chip to form a planar graph so that no
connections cross.” (p. 487)

Example: Revisit #17, p. 501.

Euler’s Formula for simple, connected planar graphs states that

r − a+ n = 2

where n is the number of nodes, a is the number of arcs, and r is the
number of regions (including the infinite region surrounding the graph).

Think “ran to” to remember the formula....

Check out the author’s proof of the theorem (p. 488-489): Hey! What’s
induction doing in here? Euler’s formula is proven by induction, on a,
the number of arcs, and a consideration of cases (node of degree 1; no
node of degree 1). Figure 6.22 illustrates the base case and the two
cases essential to the proof of the inductive step.

Note: Leonhard Euler. Born: 15 April, 1707 in Basel, Switzerland;
died 18 Sept, 1783 in St Petersburg, Russia. He was so prolific that his
work is still being compiled. He went blind in his old age, and became
even more prolific! He was an incredible calculating machine.

Example: Revisit #17, p. 501, for a check.

The following theorem provides some estimates on the relationship be-
tween the number of arcs and nodes that a planar graph may possess:

http://mathshistory.st-andrews.ac.uk/Biographies/Euler.html


Theorem: For a simple, connected, planar graph with n nodes and a

arcs,

(I) If the planar representation divides the plane into r regions, then

r − a+ n = 2

(II) If n ≥ 3, then
a ≤ 3(n− 2)

This is a consequence of Euler’s formula and the inequality 2a ≥
3r. This is a statement about region edges. The best any arc
can do is contribute to two different region edges (so at most 2a
total); and the least number of region edges that a region can
have is 3 (3r total). Hence, the most number of region edges
possible is 2a, and the least is 3r. This leads to our inequality.

(III) If n ≥ 3 and there are no cycles of length 3, then

a ≤ 2(n− 2)

This is a consequence of Euler’s formula and the inequality 2a ≥
4r, because each region now requires four arcs (at least) to define
itself.

From part (II) of this theorem we can deduce that K5 is not planar,
since it has 5 nodes, and 10 arcs, and 10 6≤ 3(5− 2) = 9.

From part (III) of this theorem we can deduce that K3,3 is not planar,
since it has 6 nodes, and 9 arcs, and no cycles of length 3: 9 6≤ 2(6−2) =
8.

Interestingly enough, it has been shown that any graph failing to be
planar has a copy of either K5 or K3,3 in it (Kuratowski’s Theorem, p.
491).

Example: Exercise #28, p. 502.



7 Computer Representations of Graphs

We want to examine two different representations of graphs by a
computer:

• the adjacency matrix, and

• the adjacency list.

A matrix is basically a spreadsheet: a rectangular data set of numbers
indexed by rows and columns.

An adjacency matrix for a graph with N nodes is of size N by N ,
where the rows and columns of the matrix represent the vertices. If
the graph is undirected, then the element aij of the matrix is non-zero
⇐⇒ nodes i and j are adjacent; if directed, then the element aij of
the matrix is non-zero ⇐⇒ there is an arc from node i to node j.

In our textbook, the element of the matrix aij = p, the number of arcs
meeting the criteria above.

Example: Practice #16, p. 493.

For an undirected graph the adjacency matrix is symmetric (which
means that we can reduce storage by about half); for a directed graph,
the matrix may well be unsymmetric.

Let’s look at a nice web page, with an example of a directed graph.
Notice that the node of departure is the row node (in this webpage,
and according to our author’s convention).

Example: Exercise #42, p. 504.

http://www.nku.edu/~longa/classes/mat385_resources/docs/matrix.html


• The 1990 commuting patterns page

might be modelled as a directed, weighted graph. Its adjacency
matrix would be exactly the numerical portion of this table, and
it would be a full matrix.

• A map of Rabies-infected towns in Connecticut

gives rise to an undirected graph. The towns are nodes, and
an arc is created if two towns are adjacent. This will lead to a
sparse symmetric adjacency matrix, however, as very few towns
are adjacent to any particular town.

An adjacency list might be a better storage method for graphs
with relatively few arcs: we effectively store only the non-zero entries
of the adjacency matrix, in a linked list:

Example: Exercise #55, p. 505.

The redundancy in drawing the adjacency list for an undirected graph
is evident. This is eliminated for a directed graph:

Example: Exercise #64, p. 505.
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