
Section 7.3: Shortest Path and

Minimal Spanning Tree

March 25, 2021

Abstract

Several algorithms are described for tracing the shortest path
between two nodes for a simple, positively weighted, connected
graph. This is a simpler problem than the traveling salesman
problem (which requires a circuit), and we might hope that a
solution algorithm is available.

In addition, algorithms for finding a minimal spanning tree
are also described, which are useful for trimming a graph to
a subgraph which leaves all nodes connected, but eliminates
“unnecessary” or “redundant” connections.

Notice that several of the algorithms we study in this section
are actually found in the exercise portion of the section – you’ll
have to hunt for them there.

1 Shortest Path Algorithms

How might you find the shortest path between two nodes?

• Maybe by examining all paths (exhaustive search) and choosing
the shortest;

• maybe by recursion, somehow.

We note that, if there are n nodes, you need at most a path of length
n−1 (otherwise you’d be going back over “old ground”, revisiting nodes
– which would mean that you made a pointless excursion.

It is relatively easy to come up with algorithms to solve this problem,
but of course some ways are better than others. We’ll look at sev-
eral standard algorithms for carrying out this task, and focus on the
advantages and disadvantages of each.



Figure 1: Edsger W. Dijkstra

1.1 Dijkstra’s Algorithm

This algorithm was first described by Edsger W. Dijkstra??1. You
might want to visit a web-based example of the workings of the algo-
rithm, such as this one.

Our author’s implementation uses the adjacency matrix, and stores
both the weights for the optimal path, as well as the path itself:

• Given two nodes x and y in a simple, connected, positively weighted
graph. We seek the shortest path from x to y (assume a non-
directed graph).

• Represent the graph by its adjacency matrix (with distances be-
tween non-adjacent nodes set to ∞) – meaning that they are
non-adjacent.

• A settled node is one whose minimal distance from x is known.
Initially, the set of settled nodes is only IN = {x}.

• We grow IN by adding in the next nearest node to x via those
already settled. When y falls into IN , we’re done.

1Dijkstra was the one who said that “the quality of programmers is a decreasing
function of the density of GO TO statements in the programs they produce.” (from
a letter to the editor of Communications of the ACM, circa 1968)

http://www.adeptis.ru/vinci/edsger_dijkstra8.jpg
https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html
http://www.u.arizona.edu/~rubinson/copyright_violations/Go_To_Considered_Harmful.html


We keep track of two arrays, indexed by the nodes of graph G:

• an array d indexed by the nodes z, of distances of z to x; and

• an array s indexed by the nodes z, of the node adjacent to a given
node z on the shortest path from z to x (so far).

When y enters IN , we can use s to trace the shortest path.

Let’s look at an example:

Example: #3, p. 591 We’ll need the adjacency matrix:































∞ 3 5 ∞ 8 1 ∞ ∞
3 ∞ 2 ∞ ∞ ∞ 1 ∞
5 2 ∞ 1 ∞ ∞ ∞ 2
∞ ∞ 1 ∞ 4 ∞ ∞ ∞
8 ∞ ∞ 4 ∞ 6 ∞ 1
1 ∞ ∞ ∞ 6 ∞ 5 ∞
∞ 1 ∞ ∞ ∞ 5 ∞ 1
∞ ∞ 2 ∞ 1 ∞ 1 ∞

































1.2 Other shortest path algorithms

The Bellman-Ford Algorithm (p. 592) operates in a fashion similar
to Dijkstra’s algorithm, only it finds the shortest distance from x to
every other node as described in the book (one could add a termination
step, of course).

Each node keeps an eye on its adjacent nodes:
• if no neighbor changes, no change in node; and

• if they change, reevaluate based on the weight of that arc.

Example: #12, p. 593 Again, we’ll need the adjacency matrix:































0 3 5 ∞ 8 1 ∞ ∞
3 0 2 ∞ ∞ ∞ 1 ∞
5 2 0 1 ∞ ∞ ∞ 2
∞ ∞ 1 0 4 ∞ ∞ ∞
8 ∞ ∞ 4 0 6 ∞ 1
1 ∞ ∞ ∞ 6 0 5 ∞
∞ 1 ∞ ∞ ∞ 5 0 1
∞ ∞ 2 ∞ 1 ∞ 1 0

































Floyd’s algorithm (p. 510) is simpler, and relatively stupid, but has the
advantage that it produces the shortest distance between any two nodes
in the graph (however it does not produce the path itself!). Sometimes
this is desired, rather than the distance between any special pair. It too
works with the adjacency matrix representation of the graph (modified
to contain ∞ off the diagonal).

It simply uses brute force to compare direct paths between a pair and
indirect paths between the same pair: we compare

A(i, k) + A(k, j)

to A(i, j), to see if it’s shorter to go from i to j via k. If so, it replaces
the element A(i, j) with this shorter distance.

Example: #15, p. 594.



2 Minimal Spanning Trees

Definition: A spanning tree for a connected graph G is a non-rooted
tree (basically a connected graph without cycles) containing the nodes
of the graph and a subset of the arcs of G. A minimal spanning tree is
a spanning tree of least weight of a simple, weighted, connected graph
G.

Prim’s algorithm is a simple one for constructing a minimal spanning
tree (these may not be unique!):

• Pick a node at random (they all must figure in the spanning tree,
and it doesn’t matter where you start). This node is the start of
your tree T .

• Follow the arc from the tree T to the nearest adjacent node, and
incorporate that arc and node into T (there may be ties - pick
one).

• Iterate!

Example: #20, p. 594

Kruskal’s algorithm is an alternative method for generating a minimal
spanning tree. It works by building up a spanning tree from the arcs,
ordered from smallest in weight to largest. The only reason to reject a
smaller arc over a larger is if it creates a cycle.

Example: #24, p. 595


	Shortest Path Algorithms
	Dijkstra's Algorithm
	Other shortest path algorithms

	Minimal Spanning Trees

