Section 7.4: Traversal Algorithms

March 30, 2021

Abstract

We’ve already examined some tree traversal algorithms (pre-
order, in-order, post-order), and considered their relative advan-
tages. We now want to open the notion of traversal to all sim-
ple, connected graphs (we certainly might want to write out the
nodes of an arbitrary graph!). We examine and compare two re-
cursive methods: depth-first and breadth-first graph traversals.
In the end, we’ll see how they work on trees, and how they relate
to those algorithms. In a sense, we're creating a tree by writing
out the nodes of a graph without repeats (without cycling).

Note: we're only covering 7.4 through Practice 16 (p. 602). ,

Important Convention: for the problems, we should stick
with the convention that, given a choice, we should choose nodes
in alphabetic order. This assures that we all end up with the
same answer, which maximizes sanity....

1 Depth-First versus Breadth-First Traver-
sal

1.1 Depth-First

The idea behind the depth-first strategy is to burrow down into the
graph, rather than spread out as one will in a breadth-first traversal.
The depth-first algorithm is recursive. Have a look at the algorithm on
p. 597.

a. Pick (mark and write) the start node;

b. Find its neighbor nodes (ordering them lexigraphically, again for
sanity’s sake!); —_—

c. For each unmarked neighbor z, DepthFirst(G x)

Figure 1: Practice 14, p. 598. Write the nodes in a depth-first search
beginning from node a.

(5,9

—~7 3 }—’%s—\))\’>‘(‘&r%<\>
S

(Y 9> lf}>
[N "0
&9 \(11 ﬁ L%j + fr
(D I
N ' »-—a««r
(q#) __: ﬁ
LQ B

\ SRy o
(/’) ! ' : H——E
%,b,o/erg,&,k)ﬁ,/\ N ULl T ’j[L‘

[
Figure 2: Exercise #1, p. 604. Ditto Practice 14. (Graph for Exercises

1-6, p. 604)

1.2 Breadth-First

Examine the breadth-first algorithm on p. 599. It uses a queue to tra-
verse the nodes, popping elements off the queue as all of their adjacent
nodes are also marked.
a. Pick (mark, write, and enqueue) the start node; then, while the
queue is non-empty,

b. Find the front-of-the-queue’s neighbor nodes (ordering them lex-

igraphically to be kind); [¢ # i 4\ %)
c. Mark, write, and enqueue those which are as yet unmarked; r L U ‘__ T
—t) |
d. Dequeue the front element of the queue; I\ﬂa/ 4 / e =
ekl -
e. Continue until the queue is empty. I _,_,,/{/V
’// L—1
Example: #11, p. 605]
_7“% | | —&—|
: T
4]
7’“—44%’

e
b
L
A
P
by d /7
/F/
g

Figure 3: Graph for Exercises 1-6, p. 604

2 How do these graph traversal algorithms
behave for trees?

Let’s look at an example: the tree of Figure 6.46, p. 517.

Figure 4: Figure 6.46, p. 517

e Depth-first equates to preordering;

%Ib(é\kl\b‘glu’i\x;%;

Mledalt/ ke

e Breadth-first does just what you’d expect! From the root on
down, by depth.

RAMERER R % X

	Depth-First versus Breadth-First Traversal
	Depth-First
	Breadth-First

	How do these graph traversal algorithms behave for trees?

