
Overview of Chapter/Sections 4.1, 6.1-3, and
7.2-4

April 9, 2021

1 Section 4.1

• The notation of sets (definition, order, cardinality, empty set, power set, Cartesian products,
countable, uncountable, ...)

• Using predicate logic to determine when two sets are equal

• Relationships between sets

• binary and unary operations (and conditions for their proper definition)

• intersection, union, complements, set-difference, and Venn diagrams

• That set theory and propositional logic share a parallel set of laws (commutativity, associa-
tivity, distributivity, identities, complements); furthermore, there are two “dual” sets of laws.
In some sense, union and intersection parallel logical or/and; set complement parallels logical
negation; and the universal and empty sets parallel true and false.

• one-to-one correspondence, and proving that sets are the same size.

• The power set of a set is always bigger than the set itself. The Power set of a set with n

elements has cardinality 2n. The empty set, with 0 elements, has a power set of 1 element –
the empty set itself. This holds true even for infinite sets, which tells us that infinity comes
in an infinite number of larger and larger sizes.

• The natural numbers is an infinite set, the smallest (called ℵ0 – “aleph null”). Yet it is the same
size as all of the integers, the even natural numbers, the prime numbers, the rational numbers,
and all “denumerable” infinite sets – those that can be put in one-to-one correspondence with
the natural numbers.

• Therefore, we discover that, for infinite sets, a proper subset may be the same size as
the set itself. However, a proper subset can never be bigger than the set itself.

1



2 Section 6.1

• Graph definitions and terminology: loops, parallel edges, directed, simple, complete, cycle,
connected, etc.

• Special graphs (Kn, Km,n)

• Isomorphic graphs:

– Definition: Two graphs (N1, A1, g1) and (N2, A2, g2) are isomorphic if there are bi-
jections (one-to-one and onto mappings) f1 : N1 → N2 and f2 : A1 → A2 such that
for each arc a ∈ A1, g1(a) = {x, y} ⇐⇒ g2[f2(a)] = {f1(x), f1(y)} (replace braces by
parentheses for a directed graph).

– Theorem: Two simple graphs (N1, A1, g1) and (N2, A2, g2) are isomorphic if there is a
bijection f : N1 → N2 such that for any nodes ni and nj of N1, ni and nj are adjacent
⇐⇒ f(ni) and f(nj) are adjacent.

– Tests for when two graphs are not isomorphic.

• Planar graphs (one which can be drawn in two-dimensions so that its arcs intersect only in
nodes)

• Euler’s Formula for connected planar graphs states that

r − a + n = 2

where n is the number of nodes, a is the number of arcs, and r is the number of regions
(including the infinite region surrounding the graph).

• Any graph failing to be planar has a subgraph isomorphic to either K5 or K3,3 (Kuratowski’s
Theorem).

• Computer representations of graphs:

– the adjacency matrix, and

– the adjacency list.

(and advantages of one representation over the other).

3 Section 6.2

• tree: an acyclic, connected graph with one node designated as the root node (or defined
recursively).

• tree terminology: root, binary, parent, child, leaf, etc.

• examples of trees

• tree representations

2



• tree traversal algorithms:
preorder root left right

inorder left root right

postorder left right root

• expression trees: infix, prefix, postfix

4 Section 6.3

• decision tree: a tree in which

– internal nodes represent actions,

– arcs represent outcomes of an action, and

– leaves represent final outcomes.

• Examples

• Lower Bounds on Searching

– a. Any binary tree of depth d has at most 2d+1 − 1 nodes. (Proof: look at the full
binary tree, as it has the most nodes per depth.)

b. Any binary tree with m nodes has depth d ≥ ⌊log m⌋.

– Theorem (on the lower bound for searching):

Any algorithm that solves the search problem for an n-element list by comparing the
target element x to the list items must do at least ⌊log n⌋ + 1 comparisons in the worst
case.

• Binary Search Tree (Binary Tree Search - follows the same path as an algorithm as the tree
creation process!)

• Sorting

– Theorem on the lower bound for sorting: you have to go to at least a depth of ⌈log n!⌉
in the worst case.

5 Section 7.2

• Euler Path: a path in which each arc is used exactly once (“highway inspector problem”).

• “Hand-shaking” Theorem: in any graph, the number of odd nodes (nodes of odd degree)
is even.

• Theorem: an Euler path exists in a connected graph ⇐⇒ there are either two or zero odd
nodes.

• Using the EulerPath algorithm (simply counts up elements in a row i of the matrix (the degree
of node i), and checks whether that’s even or odd; if in the end there are not zero or two odd
nodes, there’s no Euler path!)

• Hamiltonian Circuit: a cycle using every node of the graph (“travelling salesman problem”).

3



6 Section 7.3

• Shortest Path algorithms (for a simple, positively weighted, connected graph)

– Dijkstra’s Algorithm

– Bellman-Ford Algorithm

– Floyd’s algorithm

• Minimal Spanning Trees: A spanning tree for a connected graph G is a non-rooted tree
containing the nodes of the graph and a subset of the arcs of G. A minimal spanning tree is
a spanning tree of least weight of a simple, weighted, connected graph G.

– Prim’s algorithm

– Kruskal’s algorithm

7 Section 7.4

Traversing a graph (generalizes tree traversal):

• depth-first strategy

• breadth-first strategy

Graph-traversal algorithms can be used as tree-traversal algorithms, too!

Remember: We use the convention that, given a choice, we should choose nodes in alphabetic order.

4


	 Section 4.1 
	 Section 6.1 
	 Section 6.2 
	 Section 6.3 
	 Section 7.2 
	 Section 7.3 
	 Section 7.4 

