
- 1. Given that *f* is represented by the following table
  - i. Estimate f'(0) using forward difference quotients.
  - ii. Estimate f'(2) using forward difference quotients.
  - iii. If f'(x) = 0, what is our best guess for the value(s) of x?

| x    | 0 | 2 | 4 | 6 |
|------|---|---|---|---|
| f(x) | 4 | 0 | 6 | 6 |

- 2. Given that f is represented by the following graph:
  - i. Estimate f'(0)
  - ii. Estimate f'(2)
  - iii. Estimate two values of x such that f'(x) = 0.



- 3. Given that f(x) = 3x 2, and we want the derivative at x = 1,
  - *i.* Find the derivative graphically and numerically using Desmos taking a screen shot: https://www.desmos.com/calculator/kak2bzhnkq.
  - ii. Find the derivative using the algebraic definition.
- 4. Given that  $f(x) = 2x^2$ , and we want the derivative at x = 2,
  - *i.* Find the derivative graphically and numerically using Desmos taking a screen shot: https://www.desmos.com/calculator/kak2bzhnkq.
  - ii. Find the derivative using the algebraic definition.
- 5. Given that  $f(x) = x^3$ , and we want the derivative at x = 1,
  - *i.* Find the derivative graphically and numerically using Desmos taking a screen shot: <a href="https://www.desmos.com/calculator/kak2bzhnkq">https://www.desmos.com/calculator/kak2bzhnkq</a>.
  - ii. Find the derivative using the algebraic definition.
- 6. Given that  $f(x) = x^2 + 2x$ , and we want the derivative at x = 2,
  - *i.* Find the derivative graphically and numerically using Desmos taking a screen shot: <a href="https://www.desmos.com/calculator/kak2bzhnkg">https://www.desmos.com/calculator/kak2bzhnkg</a>.
  - ii. Find the derivative using the algebraic definition.