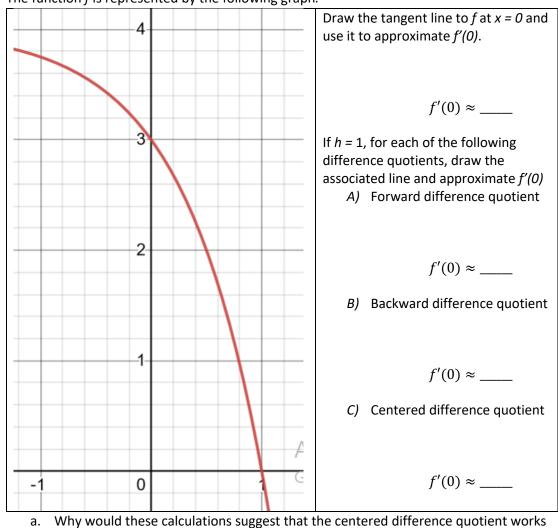
Name___

- 1. A function *f* is represented by the following table,
 - a. Fill in the missing cells with the best possible approximation: you may choose to compute them using forward, backward, or centered differences.

Approximation of f'(a)	Approximation of f'(a)	Approximation of			
using the forward	using the backward	<i>f'(1)</i> using the			
difference quotient:	difference quotient:	centered difference			
f(a+h) - f(a)	f(a) - f(a - h)	quotient:			
h	h	f(a+h) - f(a-h)			
		2 <i>h</i>			

- b. What are the units of f'(x)?
- c. Describe a situation that could accompany this table. Tell a story.
- d. If f'(a) = 0, what is your best guess for a?

x=days	0	2	4	6
f(x)=height of water	4	6	6	4
(meters)				
f'(x)				



2. The function *f* is represented by the following graph.

a. Why would these calculations suggest that the centered difference quotient works better than either the forward or backward differences?

- b. Write the equation of the tangent line at x=0, based on your approximation of the slope above.
- c. Describe what you can about the derivative function (you might include a crude sketch here).

- 3. Given that $y = f(x) = 2x^2$,
 - a. Calculate f'(x) using the backward difference quotient, the forward difference quotient and the centered difference quotient.

- b. Verify that they all give the same answer.
- c. What makes you think that the centered difference quotient works best?

- 4. A function *f* is represented by the following table,
 - a. Fill in the missing cells with the best possible approximation.
 - b. What are the units of f'(x)?
 - c. What does *f*' tell us about the situation?

X = weeks since Aug 1	0	1	2	3
<i>f</i> (<i>x</i>) =current Hospitalizations due to Covid	600	1000	1200	1300
f'(x)				

5. A function *f* has input and output as given in the table below:

x = hours since 12:00 noon

- f(x) = mile marker on a highway
- a. What are the units of f'(x)?
- b. If f(0) = 30, fill in the missing row on the table and draw a possible approximate graph of y = f(x)
- c. Assume you're the driver of the car. Write a description of your car trip from 12:00 noon to 7:00 PM. Indicate when you are stopped, when and if you turn around, etc.

x = hours since 12:00 noon	0	1	2	3	4	5	6	7
f(x)=mile marker	30							
f'(x) = velocity	0	0	60	60	30	-60	0	0

- 6. Describe different real world situations (include the units of *x* and *y*) that would be consistent with the data provided:
 - a. $f'(x) = 0, 0 \le x \le 3$
 - b. $f'(x) = 50, 0 \le x \le 3$
 - c. f'(x) is increasing as x increases, $0 \le x \le 3$
 - d. f'(x) is decreasing as x increases, $0 \le x \le 3$