Curve graphing worksheet (End of Chapter 2!)

Study and graph each function f(x) as we did in class.

Name:

1. Let $f(x) = e^{\sin(x)} + 1$.

 $In[25]:= f[x_] := E^Sin[x] + 1$

1.1. Study the function's form, symmetries, periodicity, domain and range, etc.

This function is periodic of period 2pi. We will study it on the interval [0,2pi]. Since sine oscillates between -1 and 1, this function will oscillate between e^{-1}+1 and e^1+1.

Since both e^x and sin(x) are very smooth functions, their composition will be smooth as well. The domain of both of these functions is all real numbers.

In[26]:= f'[x]
Out[26]= e^{Sin[x]} Cos[x]

1.2. Study the derivative

 $f'(x) = \cos(x) e^{\sin(x)}$

This function is 0 on the interval [0,2pi] at two points: pi/2 and 3pi/2. It starts off positive, then negative, then positive again (its sign is the sign of cos(x), since $e^{(sin(x))}$ is always positive).

In[28]:= Simplify[f''[x]] $Out[28]= e^{Sin[x]} (Cos[x]^2 - Sin[x])$

1.3. Study the second derivative

 $f''(x) = (\cos(x)^2 - \sin(x)) e^{\sin(x)}$

Again, the sign is that of what multiplies $e^{\sin(x)}$, since that term is always positive.

We can use Pythagoras to help us study the sign of that term: $\cos(x)^2-\sin(x) = 1-\sin(x)-\sin(x)^2$

so we find y such that 1-y-y^2=0, which is when y = -(1 + sqrt(5))/2 and y = -(1 - sqrt(5))/2, and then we solve for when sin(x)=y (only works for the latter): $x \rightarrow 0.666239$, $x \rightarrow 2.47535$

In[30]:= Solve[f''[x] == 0.0, x]

 $\texttt{Out[30]=} \{ \{ x \rightarrow -1.5708 - 1.06128 \text{ i} \}, \{ x \rightarrow -1.5708 + 1.06128 \text{ i} \}, \{ x \rightarrow 0.666239 \}, \{ x \rightarrow 2.47535 \} \}$

1.4. Build a table of all the important information. $x \mid 0 \mid \Box \mid pi/2 \mid 0.666 \mid \Box \mid \Box \mid 2.47 \mid 3pi/2 \mid \Box \mid 2pi$

X	0		pi/2	0.666			2.47	3 pi/2		2 pi
f(x)	2		e^1+1					e^(-1)+1		2
f'(x)	1	+	0	-	-	-	-	0	+	1
f''(x)	1	+	+	0	-	-	0	+	+	1

1.5. Plot your function on the grid below. Indicate major points of interest on the graph.

2. Let
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$
.

$$In[70] = f[x_] := (x^2 - 1) / (x^2 + 1)$$

$$g[x_] := 1 - 2 / (x^2 + 1)$$
Simplify[f[x]]
Simplify[f[x]]
Out[72] = $\frac{-1 + x^2}{1 + x^2}$
Out[73] = $1 - \frac{2}{1 + x^2}$

2.1. Study the function's form, symmetries, periodicity, domain and range, etc.

This function is even, since it involves only even powers of x. So we could study it on [0,infinity), for example.

It's a rational function, and it can be re-written as $1 - \frac{2}{1+x^2}$. This shows that its horizontal asymptote is 1, and that it is always below 1. So it has to have a minimum at x=0.

$$\begin{array}{rrr} & \text{In[74]:=} & \textbf{g'[x]} \\ & \text{Out[74]=} & \frac{4 x}{(1 + x^2)^2} \end{array}$$

2.2. Study the derivative

The derivative is 0 at 0, when we have a minimum. Its sign is negative to the left, and positive to the right of zero.

It is also a rational function, which goes to zero as x gets large.

In[76]:= Simplify[g''[x]]

Out[76]= $\frac{4 - 12 x^2}{(1 + x^2)^3}$

2.3. Study the second derivative

The second derivative is $\frac{4(1-3x^2)}{(1+x^2)^3}$. This function is zero when x = 2/sqrt(12), or 1/sqrt(3). It is negative when x is large in absolute value, and positive between its two roots.

x	-∞	-1	$\frac{-1}{\sqrt{3}}$		0		$\frac{1}{\sqrt{3}}$	1	8	
f(x)	1	0			-1			0	1	
f'(x)	0	-	-	-	0	+	+	+	0	
f''(x)	0	-	0	+	4	+	0	-	0	

2.4. Build a table of all the important information.

2.5. Plot your function on the grid below. Indicate major points of interest on the graph.