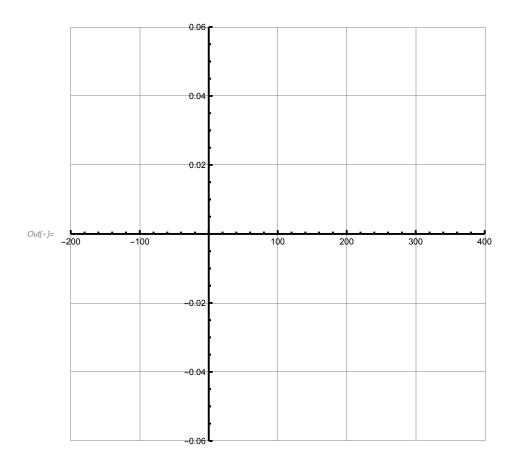

Chain Rule Worksheet

1. Find the period and the derivative for the following sinusoidal functions.

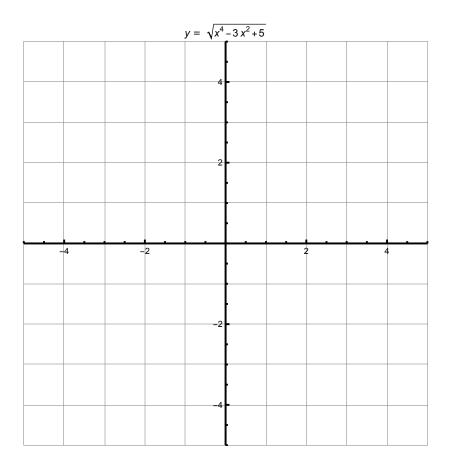
a. cos(<i>x</i>)	b. 3 cos(2 <i>x</i>)
Period:	Period:
Derivative:	Derivative:
c. $\cos\left(\frac{x}{2}\right) + 5$	d. –6 cos(4 <i>x</i>) + 2
Period:	Period:
Derivative:	Derivative:


2. Below are the graphs of $f(x) = 4\cos(x)$ and $g(x) = 4\cos(2x)$. On those graphs, draw the tangent lines at the indicated *x*-values and estimate the slopes to get the derivatives.

- **3.** Consider $y = e^{\sin(x)} + 1$ at x = 0.
 - **3.1.** Compute the derivative y'(x).
 - **3.2.** Find an equation for the tangent line to $y = e^{\sin(x)} + 1$ at x = 0.
 - **3.3.** In Desmos or on a graphing calculator plot both $y = e^{\sin(x)} + 1$ and the tangent line you found. Sketch the results below.

			4				
			2	-			
-4	-	2		- · ·	2	2	 1
_4	-:	2			2	2	 1
4	-	2	-2			2	4
4	-	2	-2	· · · · · · · · · · · · · · · · · · ·		2	
4	-	2				2	
		2	-2-			2	

- **4.** The function $f(x) = 3\cos(\frac{2\pi}{365}(x-171)) + 12$ gives a good approximation for the hours of daylight for the *x* day of the year.
 - 4.1. Today is day 76 of this year. According to this model, how many hours of daylight should we expect?
 - **4.2.** Find *f*′(*x*), and plot it.


4.3. You should get that f'(76) = 0.0515351. What does the sign and size indicate about today's daylight?

5. Consider the graph $y = \sqrt{x^4 - 3x^2 + 5}$.

5.1. What is
$$\frac{dy}{dx}$$
?

5.2. Using the derivative, find all the *x*-values where the graph has horizontal tangents.

5.3. Graph this function in Desmos or on a graphing calculator. Sketch the results below and indicate on the graph the points with horizontal tangents. Does it agree with your calculations?

