
Section 1.4: Predicate Logic

January 27, 2022

Abstract

We now consider the logic associated with predicate wffs,
including a new set of derivation rules for demonstrating validity
(the analogue of tautology in the propositional calculus) – that
is, for proving theorems!

1 Derivation rules

• First of all, all the rules of propositional logic still hold. Whew!
Propositional wffs are simply boring, variable-less predicate wffs.

• Our author suggests the following “general plan of attack”:

– strip off the quantifiers

– work with the separate wffs

– insert quantifiers as necessary

Now, how may we legitimately do so? Consider the classic syllo-
gism:

a. (All) Humans are mortal.

b. Socrates is human.

Therefore Socrates is mortal.

The way we reason is that the rule “Humans are mortal” applies
to the specific example “Socrates”; hence this Socrates is mortal.
We might write this as

a. (∀x) (H(x) → M(x))

b. H(s)

Therefore M(s).

It seems so obvious! But how do we justify that in a proof se-
quence?



• New rules for predicate logic: in the following, you should un-
derstand by the symbol x in P (x) an expression with free variable
x, possibly containing other (quantified) variables: e.g.

P (x) ≡ (∀y)(∃z)Q(x, y, z) (1)

– Universal Instantiation: from (∀x)P (x) deduce P (t).

Caveat: t must not already appear as a variable in the ex-
pression for P (x): in the equation above, (1), it would not
do to deduce P (y) or P (z), as those variables appear in the
expression (in a quantified fashion) already.

Example: Practice 22, p. 60. Prove:

(∀x)[P (x) → R(x)] ∧ [R(y)]′ → [P (y)]′

– Existential Instantiation: from (∃x)P (x) deduce P (t).

Caveat: t must be introduced for the first time (so do these
early in proofs). You can do a universal instantiation which
also uses t after an existential instantiation with t, but not
vice versa (e.g. Example 27, p. 60).

Example: Ex. #12, p. 70 (start). Prove that the following
wff is a valid argument:

(∀x)P (x) ∧ (∃x)Q(x) → (∃x)[P (x) ∧ Q(x)]
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– Universal Generalization: from P (x) deduce (∀x)P (x).

Caveats:

∗ P (x) hasn’t been deduced by existential instantiation
from any hypothesis in which x was free (Example, p.
61, middle), and

∗ P (x) hasn’t been deduced by existential instantiation
from another wff in which x was free. For example,
suppose that we wanted to prove, in the domain of the
integers, that:

(∀x)(∃y)(x + y = 0) → (∀x)(x + a = 0)

1.(∀x)(∃y)(x + y = 0) hyp

2.(∃y)(x + y = 0) 1, ui

3.x + a = 0 2, ei
4.(∀x)(x + a = 0) 3, incorrect ug

Example: Ex. #20, p. 71. Prove:

(∀x)[P (x) → Q(x)] → [(∀x)P (x) → (∀x)Q(x)]

(Note: the deduction method still applies, of course.)

– Existential Generalization: from P (a) deduce (∃x)P (x).

Caveat: x must not appear in P (a).

Example: Ex. #12, p. 70 (finish).
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2 Some results/notes

• Note that

(∀y)[P (x) → Q(x, y)] ⇐⇒ [P (x) → (∀y)Q(x, y)]

as shown on pp. 64, and

(∃y)[P (x) → Q(x, y)] ⇐⇒ [P (x) → (∃y)Q(x, y)]

as Gersting suggests (bottom, p. 64). How would we demonstrate
that? (See “temporary hypothesis”, below.)

This means that we can “pass over” predicates outside our own
scope, or include them within our own scope – provided they do
not conflict with other similarly named variables. This is similar
to what we do with summation notation, when, for example, we
can write

m∑

i=1

n∑

j=1

A(i)B(j) =
m∑

i=1

A(i)
n∑

j=1

B(j)

• Note also the method of proof: the author introduces a tempo-
rary hypothesis. If you think about the deduction method, it
takes a conclusion which is an implication and rewrites it so that
the implication disappears (the antecedent becomes one of the
hypotheses). Similarly, we can take an hypothesis (in this case,
one which we introduce) and turn a conclusion into an implica-
tion. This is the deduction method backwards! That is, suppose
that one starts with P (x) as true. Suppose further that if you
add a “temporary hypothesis” Q(x) then you can deduce R(x):

P (x) ∧ Q(x) → R(x)

Using the deduction method backwards, we conclude that

P (x) → (Q(x) → R(x))

Since P (x) implies the implication Q(x) → R(x), we can add it
as an hypothesis to our argument:

P (x) ∧ (Q(x) → R(x))

Think about it....

Here’s a simple example of how it works. Suppose that I am the
king. Now suppose that, in the same kingdom, there is a queen
(ruling in the kingdom). Then she must be my wife, by the laws
of royalty. Hence, to the proposition “There is a king” we could
attach the hypothesis “If there is a queen (ruling in the kingdom),
then the queen is the king’s wife.” This additional hypothesis is
true as long as there is a king (which is hypothesized). We’ve got
the following chain of events:

K hypothesis

Q temp. hyp.

W (Q, K) laws of royalty

Q → W (Q, K) temp. hyp. discharged



Note that this “discharged” hypothesis is only true in the context
of the hypotheses already assumed

K ∧ (Q → W (Q, K))

(if there were no king, it might be that there is a queen who is
not the king’s wife – e.g. Queen Elizabeth I).

Look at the three proofs using a temporary hypothesis (Examples
#31, and 32(a,b)). Notice how the introduction of the temporary
hypothesis ends with an implication, which is then useful for the
continuation of the proof.

Example: Practice 25, p. 65: Prove:

(∀x)[(B(x) ∨ C(x)) → A(x)] → (∀x)[B(x) → A(x)]

So now, how would we demonstrate that

(∃y)[P (x) → Q(x, y)] ⇐⇒ [P (x) → (∃y)Q(x, y)]

(by the way, I really shudder when I see this one – this is a
technical argument, that shows that it’s possible to have ∃ and
→ together....)

Example: #39, p. 72

Using predicate logic, prove that this argument is valid. Use the
predicate symbols shown.

Every computer science student works harder than somebody, and
everyone who works harder than any other person gets less sleep
than that person. Maria is a computer science student. Therefore,
Maria gets less sleep than someone else. C(x), W (x, y), S(x, y), m
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