
Sections 3.1: Recursive Definitions

February 12, 2022

Abstract

In this section and the next we examine multiple applications

of recursive definition and illustrate its usefulness with many

examples. Recursion is one of the coolest ideas in the whole

world: it has been voted “most likely to land you in an infinite

loop”, however....

1 Recursive Definitions

A recursive definition is a close relative of mathematical induction.
There are two elements to the definition:

(a) A basis case (or cases) is given, and

(b) an inductive or recursive step describes how to generate additional
cases from known ones.

Example: the Factorial function sequence:

(a) F (0) = 1, and

(b) F (n) = nF (n− 1), n ≥ 1.

Note: This method of defining the Factorial function obviates the
need to “explain” that F (0) = 0! = 1. For that reason, it’s better than
defining the Factorial function as “the product of the first n positive
integers,” which it is from n = 2 on. Defined as “the product”, even
F (1) = 1! = 1 seems weird....

In this section we encounter examples of several different objects which
are defined recursively:

Figure 1: Table 3.1, p. 171

• sequences – an enumerated list of objects (like factorials)

Example: Fibonacci numbers - Example 2, p. 159 - history,
#37, p. 175 – let’s have a look at those....)

I’m very fond of lisp (my variant is called xlisp, and xlispstat).
Here is a recursive definition for Fibonaccis, in lisp:

(defun fib(n)

(if (not (and (integerp n) (> n 0))) (error "Only natural numbers are allowed"))

(case n

;; the following two cases are the base cases:

(1 1)

(2 1)

;; and, if we’re not in a base case, then we should use recursion.

;; This means that function fib actually invokes itself:

(t (+ (fib (- n 1)) (fib (- n 2))))

;; but, because the argument decreases, we’ll eventually hit the

;; ‘‘basement, or base cases’’.

)

)

> (fib 5)

5

> (mapcar #’fib (iseq 1 8))

(1 1 2 3 5 8 13 21)

Note, however, that this is a horrible way to compute Fibonacci
numbers. If you try

(fib 55),

it will first compute (fib 54) and (fib 53).

Then (fib 54) will likewise compute (fib 53) (but we’re already
scheduled to do that!), and so on. Very wasteful. It will only
take us a little while to drive a computer to its knees (if it only
had knees...:)

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html#section1.1
http://norsemathology.org/wiki/images/f/fb/FibonacciPairs.png
http://www.nku.edu/~longa/classes/mat385_resources/lsp/index.html#fibonacci

> (time (fib 20))

The evaluation took 0.02 seconds; 0.00 seconds in gc.

6765

> (time (fib 30))

The evaluation took 2.85 seconds; 0.05 seconds in gc.

832040

> (time (fib 35))

The evaluation took 31.61 seconds; 0.70 seconds in gc.

9227465

Upshot: Recursive definitions of functions may be easy to cre-

ate or code, but they may also be tremendously wasteful!

Figure 2: Computers DO have knees! But just two fingers.... Thanks
to Blake Nelms, Math for Liberal Arts student.

Here’s a better way: “fibb” produces a pair of fibonacci numbers
at each calculation by making a single call to itself, thus avoiding
the needless proliferation of pointless repetitions of “fib”:

(defun fibb(n)

(if (not (and (integerp n) (> n 0))) (error "Only natural numbers are allowed"))

(case n

(1 ’(1 0))

(2 ’(1 1))

(t (let ((temp (fibb (- n 1))))

(list (sum temp) (first temp))

)

)

)

)

)

> (time (fibb 30))

The evaluation took 0.00 seconds; 0.00 seconds in gc.

(832040 514229)

> (time (fibb 35))

The evaluation took 0.00 seconds; 0.00 seconds in gc.

(9227465 5702887)

We’ll be proving various facts about Fibonacci numbers. Pay
careful attention to the differences in examples 3 and 4: I love
mathematics because there’s always more than one way to show
something – but these examples illustrate why you want to stop
and think about strategy before you attempt a proof! Let’s take
a look....

By the way, Fibonacci numbers appear systematically in Pascal’s
Triangle (of course!).

Example: #32, p. 174 (This example illustrates – like Exam-
ple 3 – that you sometimes need more than one base case in an
induction proof.)

Often we may be able to find a “closed-form” solution to a re-
currence relation (in fact, one exists for the Fibonacci sequence).
We’ll focus on that in the next section.

• sets

Example: finite length and palindromic strings - Example
6 and Practice 6 and 7, pp. 163)

http://ceadserv1.nku.edu/longa//classes/mat115/days/resources/docs/PascalHexagons.pdf

(check out Demetri Martin’s Palindromic Poem)

Example: wffs We also used a recursive definition to create the
set of all valid wffs: propositions are wffs, and, given two wffs P
and Q,

– P ∧Q and P ∨Q,

– P → Q and P ←→ Q, and

– P ′ and Q′

are also wffs. (Notice that there’s some redundancy in our defi-
nition.)

• operations

Example: string concatenation - Practice 8, p. 165

• algorithms

Example: BinarySearch - Practice 10, p. 170

Check out Example #14, p. 170, for the author’s definition of
“middle” when you have an even number of elements – it’s the
top of the left half.

http://www.nku.edu/~longa/classes/mat385_resources/docs/Palindromic-Poem.pdf

	Recursive Definitions

