Derivative at a Point Worksheet

Corresponding to Section 1.3

- **1.** Given that $k(x) = 1.5^x$, we want the derivative at x = -2.
 - **1.1.** Graph this function along with its tangent line at x = -2. Approximate the slope of this tangent line.

{k'[-2], 2.6/15}

 $\{0.180207, 0.173333\}$

1.2. Approximate the derivative of this function at *x* = 2 to 3 decimal places by numerically evaluating the difference quotient for *x*-values that get progressively closer to 2.

	Х	2.1	2.01	2.001	2.0001	2.00001
k	$\frac{x}{x-2}$					
k	′́(2) ≈_					

х	2.1	2.01	2.001	2.0001	2.00001
$\frac{k(x) - k(2)}{x - 2}$	0.931044	0.914149	0.912481	0.912315	0.912298

k'(2) is approximately 0.912

2. Given that f(x) = 3x - 2, we want the derivative at x = 1.

2.1. Graph this function along with its tangent line at *x* = 1. Identify the slope of this tangent line.

2.2. Find the derivative of this function at x = 1 using the limit definition.

f'(x)

 $=\lim_{h\to 0}{(f(1+h)-f(1))/h}$

 $= \lim_{h \to 0} (3 * (1 + h) - 2 - (3 * 1 - 2))/h$

 $= \lim_{h \to 0} (3h)/h = \lim_{h \to 0} 3 = 3$

3. Given that $g(x) = \frac{x^2}{2}$, we want the derivative at x = 3.

3.1. Graph this function along with its tangent line at x = 3. Identify the slope of this tangent line.

3.2. Find the derivative of this function at x = 3 using the limit definition.

$g'(x) = \lim_{h \to 0} (g(3+h) - g(3))/h$

 $= \lim_{h \to 0} \left((3+h)^2/2 - (3^2/2) \right) / h$

 $= \lim_{h \to 0} ((6h + h^2)/2)/h = \lim_{h \to 0} (3 + h/2) = 3$

4. Given that $h(x) = x^2 - x$, we want the derivative at x = 2.

4.1. Graph this function along with its tangent line at *x* = 2. Identify the slope of this tangent line.

4 | 1.3 derivative at point.key.nb

4.2. Find the derivative of this function at *x* = 2 using the limit definition.

It's a little confusing to use "h" for the function name when you're doing derivatives by the limit definition; hence I'll use "g":

 $g'(x) = \lim_{h \to 0} (g(2+h) - g(2))/h$

$$= \lim_{h \to 0} ((2+h)^2 - (2+h) - (2^2 - 2))/h$$

 $= \lim_{h \to 0} ((4h + h^{2}) - h)/h = \lim_{h \to 0} (3) = 3$

4.3. Find an equation for the tangent line at *x* = 2.

Print["y=", g'[2] (x - 2) + g[2]] y=2 + 3 (-2 + x)