- Pages -

1of6

https://print.vitalsource.com/requests/Ftgl4k6iucEIS8k A2GdB/claim?p...

Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be reproduced or

transmitted without publisher's prior permission. Violators will be prosecuted.

\ 212 Recursion, Recurrence Relations, and Analysis of Algorithms

SECTION 3.3 REVIEW

TECHNIQUE * Analysis of recursive algerithms often leads to re-
. . : lations.
* Do a worst-case analysis of an algorithm either ogE e .
directly from the algorithm description or from a Lac!(mg e elxact'e esion for }he nunl:ebcr Of.g‘l)'
sation erations an algorithm performs, it may be possible
NE———) to find an up d.
MAIN IDEAS
* Analysis of an algorithm estimates the number of
basic operations that the algorithm performs, which /
is dependent on the size of the input.

EXERCISES 3.3

1. Modify the algorithm of Example 27 so that in an to dropping the student’s lowest quiz grade, the
highest quiz grade is counted twice (like the old version, your new algorithm should do no operations
besides addition and subtraction).)

2. What is the total number of arithmegs tions done in the algorithm of Exercise 1?7

3. The following algorithm adds all the entries in a square n X n array 4. Analyze this algorithm where the
work unit is the addition o A

sum =0
fori=1tonde A

forj =1 low '
sum = su Ali, j] -

end for

end for
write f of all array elements is”, sum) /
4. The wing algorithm adds all the entries in the ‘wpper tnangular” part of a square n X n array A.
/.lyze this algorithm where the work unit is the addition operation.

y sum =0
fork = ltondo «
forj = ktondo
sum = sum + A[k, j]
end for
end for
write (“Total of all upper triangular array elements is”, sum)

5. Analyze the following algorithm where the work unit is the output statement. Assume that n = 2" for
some positive integer m.

integer j, k
fork=1tondo
j=m
whilej = 2 do
write j
j=jr2
end while
end for

2/28/22,11:03 PM

- Pages - https://print.vitalsource.com/requests/Ftgl4k6iucEIS8k A2GdB/claim?p...

Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be reproduced or
transmitted without publisher's prior permission. Violators will be prosecuted.

Section 3.3 Analysis of Algorithms 213

6. Analyze the following algorithm where the work unit is the output statement. (Hint: One of the exercises
in Section 2.2 might be helpful).

integer i
reald, x;
fori=1tondo
d = 1.0/;
x =1
while x > 0do
write x
x=x-d;
end while
end for

Exercises 7 and 8 involve n! = n(n — 1)(n — 2)--- 1.

7. a. Write the body of an iterative function to compute n! fopnr = 1.
b. Analyze this function where the work unit is the multiplication operation.

8. a. Write a recursive function to compute n! for n ="
b. Write a recurrence relation for the work done By this function where multiplication is the unit of work.
c. Solve the recurrence relation of part b.
d. Compare your answer in part ¢ to youpresult in Exercise 7b.

Exercises 9 and 10 involve evaluating a polynomial a.x" + a,_x" ' + - - - 4 a, for a specific value of x.
9. A straightforward algorithm te'evaluate a polynomial is given by the following function:

Poly(real a,, real a, ,, £. , real a,, real ¢, integer n)

/levaluates polynomial a.x" + a, x* '+ -+ a, forx=c
Local variables: y
integer i '

real sum = a,

real produet= 1

fori= 1tondo
product = product * ¢
sum = sum + a, » product
end for
return sum
end function Poly

a. Walk through this algorithm to compute the value of 2 — 7x* + 5x — 14 forx = 4.

b. The algorithm involves both additions and multiplications; analyze this algorithm where those operations
are the work units.

10. An alternative to the polynomial evaluation algorithm in Exercise 9 is an algorithm called Horner s
method. Homer's method relies on an alternative expression for a polynomial, for example

23 = Tx* 4 5x = 14 = =14 + x(5 + x(—=7 + x(2)))

20f 6 2/28/22,11:03 PM

- Pages - https://print.vitalsource.com/requests/Ftgl4k6iucEIS8k A2GdB/claim?p...

Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be reproduced or
transmitted without publisher's prior permission. Violators will be prosecuted.

{ 214 Recursion, Recurrence Relations, and Analysis of Algorithms
Horner(real a,, real a,_,, ..., real a,, real c, integer n)
/levaluates polynomial . + a, X" '+ - +a, forx=c
//using Horner’s method
Local variables: 4
integer i
real result = a,, ‘

fori= ltondo /
result = result * ¢ + a,_;
end for)
return result)
end function Horner

a. Walk through this algorithm to compute the valu — ¢ + 5x — ldforx = 4,
b. Analyze this algorithm where addition and multiplication operations are the work units.

¢. In evaluating a polynomial of degree n = 98 for some value of x, how many operations have been saved
by using Horner’s method over the me f Exercise 9?

11. For the algorithm of Example 27, ¢ total number of assignments and comparisons done in the best
case (least work) and the worst ¢ ¢(most work); describe each of these cases.

12. a. Write a function to convl a binary string b.b, _, ... byb, to its decimal equi‘vnlcnl.
b. Test your function on,the binary string 10011
c¢. Describe the worst for this algorithm and find the number of multiplications and additions done in
this case.

d. Describe the gcase for this algorithm and find the number o? muluplications and additions done in
this case.

Exercises '5 4 relate to a recursive sorting algorithm called BubbleSort.

13. ithm BubbleSort works by making repeated passes through a list; on each pass, adjacent elements
that are out of order are exchanged. At the end of pass 1, the maximum element has “bubbled up™ to the

end of the list and does not participate in gubsequent passes. The following algorithm is called initially
withj = n.

BubbleSoru(list L; integer /)
//recursively sorts the items from 1 toj in list L into increasing order

if j = | then
sort is complete, write out the sorted list
else
fori= 1toj— ldo
if L[i] > L[i + 1] then
exchange L[i] and L[i + 1]
end if
end for
BubbleSor«(L,j — 1)
end if
end function BubbleSort

30f6 2/28/22,11:03 PM

- Pages - https://print.vitalsource.com/requests/Ftgl4k6iucEIS8k A2GdB/claim?p...

Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be reproduced or
transmitted without publisher's prior permission. Violators will be prosecuted.

Section 3.3 Analysis of Algorithms 215

a. Walk through algorithm BubbleSort to sort the list 5, 6, 3, 4, 8, 2.

b. Write a recurrence relation for the number of comparisons of list elements done by this algorithm to sort
an n-element list.

¢. Solve this recurrence relation.

14. In algorithm BubbleSort, suppose we include exchanges of list elements as a v’r’(unit, in addition to
comparisons between list elements.

a. Describe the worst case and find the number of comparisons and exchanges done in this case.

b. Describe the best case and find the number of comparisons and exW done in this case.

c. Assume that on the average exchanges between clements must be done about half the time. Find the
number of comparisons and exchanges done in this case. /

Exercises 1518 refer to the recursive algorithm SelectionSort of Section 3.1.

15. In one part of algorithm SelectionSort, the index of the imum item in a list must be found. This requires
comparisons between list elements. In an n-element (rted) list, how many such comparisons are needed
in the worst case to find the maximum element? How many such comparisons are needed in the average case?

16. Defining the basic operation as the comparison of list elements and ignoring the amount of work required
to exchange list elements, write a recurrence 9htion for the amount of work done by gelection sort on an

n-element list. (Hint: Use the result from Exercise 15.) S

17. Solve the recurrence relation of Exercise 16. >4

18. Assume that the exchange of L[i) ay'lL[J] takes place even if i = j. Write ah expression for the total
number of comparisons and exchanges done to sort an n-element list. >

7
Exercises 19-24 relate to a recursive'sorting algorithm called MergeSort, wbiéh is described as follows: A one-
element list is already sorted; no further work is required. Otherwise, split the list in half, sort each half using
MergeSort (this is the recuxsivp‘fnn). and then merge the two halves baéit into one sorted list.

19. The merge part of algorithm MergeSort requires comparing cﬂn’ems from each of two sorted lists to see
which goes next into the combined, sorted list. When one list runs out of elements, the remaining elements
from the other)y‘ can be added without further comparisons. Given the following pairs of lists, perform
a merge and count the number of comparisons to 3 two lists into one.
a.6,89and 1,4,5)

b. 1yS/8and 2,3, 4 y
c. 0,2,3,4,7,10and 1, 8,9

20. Under what circumstances will the maximum number of comparisons take place while merging two sorted
lists? If the lengths of the lists are r and s, what is the maximum number of comparisons?

21. Write a recurrence relation for the number of comparisons between list elements done by algorithm
MergeSort in the worst case. Assume that n = 2",

22. Solve the recurrence relation of Exercise 21.

23, Use the results of Exercises 18 and 22 to compare the worst-case behavior of SelectionSort (counting
comparisons and exchanges) and MergeSort (counting comparisons) for n = 4, 8, 16, and 32 (use a
calculator or spreadsheet).

24, Use the results of Exercises 14 and 22 to compare the worst-case behavior of BubbleSort (counting
comparisons and exchanges) and MergeSort (counting comparisons) for n = 4, 8, 16, and 32 (use a
calculator or spreadsheet).

Exercises 25-34 relate to a recursive sorting algorithm called QuickSort, which is described as follows: A
one-element list is already sorted; no further work is required. Otherwise, take the first element in the list, call it the

4 of 6 2/28/22,11:03 PM

- Pages -

https://print.vitalsource.com/requests/Ftgl4k6iucEIS8k A2GdB/claim?p...

Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be reproduced or

50f6

transmitted without publisher's prior permission. Violators will be prosecuted.

l 216 Recursion, Recurrence Relations, and Analysis of Algorithms

pivot element, then walk through the original list to create two new sublists, L; and L,. L, consists of all elements
that are less than the pivot element and L, consists of all elements that are greater than the pivot element. Put the
pivot element between L, and L,. Sort each of L1 and L2 using QuickSort (this is the recursive part). Eventually
all lists will consist of 1 element sublists separated by previous pivot elements, and at this point the entire original
list is in sorted order. This is a little confusing, so here is an example, where pivot elements are shown in brackets:

Original list: 6,2,1,7,9,4, 8

After Istpass: 2,1,4,(6],7,9,8

After 2nd pass: 1, [2], 4, [6],[7],9, 8

After 3rd pass: 1, [2], 4, [6], [7], 8, [9] Sorted

25. llustrate QuickSort as above using the list 9, 8, 3, 13.
26. Illustrate QuickSort as above using the list 8,4, 10,5,9,6, 14,3, 1, 12, 11.
27. How many comparisons between list elements are required for pass | of QuickSort in the example list?

28. How many comparisons between list elements are required for pass | ickSort on an n-element list?

29. Suppose that for each pass, each pivot element splits its sublist into two equal-length lists, each approxi-
mately half the size of the sublist (which is actually very difficult to aghieve). Write a recurrence relation
for the number of comparisons between list elements in this

30. Solve the recurrence relation of Exercise 29.

31. Suppose that for each pass, each pivot element splits its subg (which has k elements) into one empty list
and one list of size k — 1. Write a recurrence relation number of comparisons between list elements
in this case.

32. Solve the recurrence relation of Exercise 31,

33. Unlike the situation described in Exercise 2 re each pivot element splits the sublist in half for the next
pass, the situation described in Exereise 31 easily occur. Describe a charactcr's{?of the original list
that would cause this to happen. J

34. Exercise 29 describes the best QuickSort and Exercise 31 describes @ worst case of QuickSort
with respect to comparisons. een list elements.)

a. To which sorting algor (SelectionSort, BubbleSort, Melgew’ls the best case of QuickSort
comparable in the r of comparisons required? >

b. To which sorting algorithm (SelectionSort, BubbleSort, N IQXon) is the worst case of QuickSort
comparable in the number of comparisons required?

Exercises 35 and 36/refer to algonithm SequentialSearch. It i d to do an average case analysis of the
sequential se gorithm under certain assumptions. Given an n-element list and a target value x for which
weare s ing, the basic operation is a comparison oflistelements to x, hence an analysis should count how

many such an operation is performed “on %&crage.“ The definition of “average” is shaped by our
assu S.
) 4

35. Assume that x is in the list and is equally to be found at any of the » positions in the list. Fill in the rest of
the table giving the number of comparisons for each case.

Position at Which x Occurs | Number of Comparisons
1 1
2
3
n

2/28/22,11:03 PM

- Pages -

https://print.vitalsource.com/requests/Ftgl4k6iucEIS8k A2GdB/claim?p...

Printed by: longa@nku.edu. Printing is for personal, private use only. No part of this book may be reproduced or

6 of 6

transmitted without publisher's prior permission. Violators will be prosecuted.

| Chapter 3 Review 217

Find the average number of comparisons by adding the results from the table and dividing by n. (Hint: See
Practice 7 of Section 2.2—we told you that you should remember this!)

36. Find the average number of comparisons under the assumption that x is equally likely to be at any of the
n positions in the list or not in the list.

Exercises 3740 concern a better upper bound for the number of divisions required by the Euclidean algorithm
in finding ged(a, b). Assume that @ and b are positive integers witha > b.

37. Suppose that m divisions are required to find ged(a, b). Prove by induction that for m = 1 it is true that
a=Fm+ 2)and b = F(m + 1), where F(n) is the Fibonacci sequence. (Hint: To find ged(a, b), after the
first division the algorithm computes ged(b, r).)

38. Suppose that m divisions are required to find ged(a, b), with m = 4. Prove that
m+
(%) <Fm+2)=a

(Hint: Use the result of Exercise 37 here and Exercise 26 of Section 3.1.) m’
m < (log,< a)— 1.

39. Suppose that m divisions are required to find ged(a, b), with m = 4. Prove
(Hint: Use the result of Exercise 38.)

40. a. Compute ged(89, 55) and count the number of divisions required.

b. Compute the upper bound on the number of divisions required for gcd(89, 55) using Equation (1).
¢. Compute the upper bound on the number of divisions required for ged(89, 55) using the result of
Exercise 39. '

of division done by the Euclidean algorithm to a, b) where a > b is 5 times the number of
decimal digits in 5. Compute the upper bound on the number of divisions required for ged(89, 55) using

Lamé’s theorem.

,‘ N>
CHAPTER 3 REVIEW >

d. The eighteenth-century French mathematician Gabriel L?’ proved that an upper bound on the number

o
TERMINOLOGY a N2
analysis of algorithms (p. 203) empty string (p. 163) \,SElection sort algorithm (p. 168)
Backus—Naur form (BNF) Fibonacci sequence (p. 159) ’V sequence (infinite sequence)
(p. 163) first-order recurrence mlaliy (p. 158)
binary search algorithm (p. 169) (p- 182) /) sequential search algorithm
binary string (p. 16 homogeneous rccurrcn@e ation (p. 204)
charactenstic 10n of a (p. 182) ‘ solving a recurrence relation
recurrenge relation (p.190) index of summation (p. 182) (p. 180)
closed>- fogm solution (p. 180) inductive defiitibn (p. 158) structural induction (p. 164)
concal ion (p. 163) linear recunvge relation summation notation (p. 182)
constant coefficient recurrence (p. 182) upper bound (p. 210)
relation (p. 182) palindrome (p. 163)
divide-and-conquer algorithm recurrence relation (p. 159)
(p. 208) recursive definition (p. 158)
divide-and-conquer recurrence second-order recurrence relation
relation (p. 193) (p. 188)

2/28/22,11:03 PM

