really the only kinds of finite Boolean algebras. In a sense we have come full circle. We defined a Boolean algebra to represent many kinds of situations; now we find that (for the finite case) the situations, except for the labels of objects, are the same anyway!

SECTION 8.1 REVIEW

TECHNIQUES

- Decide whether something is a Boolean algebra.
 Prove properties about Boolean algebras.
- Write the equation meaning that a function f preserves an operation from one instance of a structure to another, and verify or disprove such an equation.

MAIN IDEAS

- Mathematical structures serve as models or abstractions of common properties found in diverse situations.
- If there is an isomorphism (a bijection that preserves properties) from A to B, where A and B are instances of a structure, then except for labels, A and B are the same.
- All finite Boolean algebras are isomorphic to Boolean algebras that are power sets.

EXERCISES 8.1

1. Let $B = \{0, 1, a, a'\}$, and let + and \cdot be binary operations on B. The unary operation ' is defined by the table

	,
1	0
0	1
a'	а
a	a'

Suppose you know that $[B, +, \cdot, ', 0, 1]$ is a Boolean algebra. Making use of the properties that must hold in any Boolean algebra, fill in the following tables defining the binary operations + and \cdot :

+	0	1	a a'		0	1	а	a'
0			40	0				
1				1				
а				a				
a'				a'				

- 2. a. What does the universal bound property (Practice 3) become in the context of propositional logic?
 - b. What does it become in the context of set theory?
- Define two binary operations + and · on the set Z of integers by x + y = max(x, y) and x · y = min(x, y).
 - Show that the commutative, associative, and distributive properties of a Boolean algebra hold for these two operations on Z.
 - b. Show that no matter what element of Z is chosen to be 0, the property x + 0 = x of a Boolean algebra fails to hold.

Let M₂(Z) denote the set of 2 × 2 matrices with integer entries, and let + denote matrix addition and denote matrix multiplication. Given

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ then } \mathbf{A}' = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}.$$

Using $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ as the 0 element and the 1 element, respectively, either prove that

 $[M_2(\mathbb{Z}), +, \cdot, ', 0, 1]$ is a Boolean algebra or give a reason why it is not.

5. Let S be the set $\{0, 1\}$. Then S^2 is the set of all ordered pairs of 0s and 1s; $S^2 = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$. Consider the set B of all functions mapping S^2 to S. For example, one such function, f(x, y), is given by

$$f(0, 0) = 0$$

 $f(0, 1) = 1$
 $f(1, 0) = 1$
 $f(1, 1) = 1$

- a. How many elements are in B?
- b. For f_1 and f_2 members of B and $(x, y) \in S^2$, define

$$(f_1 + f_2)(x, y) = \max(f_1(x, y), f_2(x, y))$$

$$(f_1 \cdot f_2)(x, y) = \min(f_1(x, y), f_2(x, y))$$

$$f'(x, y) = \begin{cases} 1 \text{ if } f_1(x, y) = 0\\ 0 \text{ if } f_1(x, y) = 1 \end{cases}$$

$$f_1(0, 0) = 1 \qquad f_2(0, 0) = 1$$

Suppose

$$f_1(0, 0) = 1$$
 $f_2(0, 0) = 1$
 $f_1(0, 1) = 0$ $f_2(0, 1) = 1$
 $f_1(1, 0) = 1$ $f_2(1, 0) = 0$
 $f_1(1, 1) = 0$ $f_2(1, 1) = 0$

What are the functions $f_1 + f_2$, $f_1 \cdot f_2$, and f'_1 ?

c. Prove that $[B, +, \cdot, ', 0, 1]$ is a Boolean algebra where the functions 0 and 1 are defined by

$$0(0, 0) \neq 0$$
 $1(0, 0) = 1$
 $0(0, 1) = 0$ $1(0, 1) = 1$
 $0(1, 0) = 0$ $1(1, 0) = 1$
 $0(1, 1) = 0$ $1(1, 1) = 1$

6. Let n be a positive integer whose decomposition into prime factors has no repeated prime. Let B = {x | x is a divisor of n}. For example, if n = 21 = 3 · 7, then B = {1, 3, 7, 21}. Let the following operations be defined on B:

$$x + y = \text{lcm}(x, y)$$
 $x \cdot y = \text{gcd}(x, y)$ $x' = n/x$

Then + and \cdot are binary operations on B and ' is a unary operation on B.

- a. For n = 21, find
 - (i) $3 \cdot 7$
 - (ii) $7 \cdot 21$
 - (iii) 1 + 3
 - (iv) 3 + 21
 - (v) 3'
- b. Prove that the commutative, associative, and distributive properties hold for both + and ·.
- c. Find the value of the "0" element and the "1" element, then prove properties 4 and 5 for both + and ·.
- d. Consider a value for n whose decomposition has repeated primes. In particular, let $n = 12 = 2 \cdot 2 \cdot 3$. Prove that, using the above definitions for + and ·, it's not possible to define a complement for 6 in the set $\{1, 2, 3, 4, 6, 12\}$. Therefore a Boolean algebra cannot be constructed with n = 12 using the process described.
- 7. Prove the following property of Boolean algebras. Give a reason for each step. (Hint: Remember the uniqueness of the complement.)

$$(x')' = x$$
 (double negation)

8. Prove the following property of Boolean algebras. Give a reason for each step. (Hint: Remember the uniqueness of the complement.)

$$(x + y)' = x' \cdot y'$$
 $(x \cdot y)' = x' + y'$ (De Morgan's laws)

- O'llkil.edil 9. Prove the following properties of Boolean algebras. Give a reason for each step.
 - a. $x + (x \cdot y) = x$

(absorption properties)

$$x \cdot (x + y) = x$$

b. $x \cdot [y + (x \cdot z)] = (x \cdot y) + (x \cdot z)$

(modular properties)

$$x + [y \cdot (x + z)] = (x + y) \cdot (x + z)$$

- c. $(x + y) \cdot (x' + y) = y$
 - $(x \cdot y) + (x' \cdot y) = y$
- d. $(x + (y \cdot z))' = x' \cdot y' + x' \cdot z'$

$$(x \cdot (y+z))' = (x'+y') \cdot (x'+z')$$

e. $(x + y) \cdot (x + 1) = x + (x \cdot y) + y$

$$(x \cdot y) + (x \cdot 0) = x \cdot (x + y) \cdot y$$

Prove the following properties of Boolean algebras. Give a reason for each step.

a.
$$(x + y) + (y \cdot x') = x + y$$

b.
$$(y + x) \cdot (z + y) + x \cdot z \cdot (z + z') = y + x \cdot z$$

c.
$$(y' \cdot x) + x + (y + x) \cdot y' = x + (y' \cdot x)$$

d.
$$(x + y') \cdot z = [(x' + z') \cdot (y + z')]'$$

e.
$$(x \cdot y) + (x' \cdot z) + (x' \cdot y \cdot z') = y + (x' \cdot z)$$

- 11. Prove the following properties of Boolean algebras. Give a reason for each step.
 - a. $x + y' = x + (x' \cdot y + x \cdot y)'$
 - b. $[(x \cdot y) \cdot z] + (y \cdot z) = y \cdot z$
 - c. $x \cdot y + y \cdot x' = x \cdot y + y$
 - d. $(x + y)' \cdot z + x' \cdot z \cdot y = x' \cdot z$
 - e. $(x \cdot y') + (y \cdot z') + (x' \cdot z) = (x' \cdot y) + (y' \cdot z) + (x \cdot z')$
- Prove the following properties of Boolean algebras. Give a reason for each step.
 - a. $(x + y \cdot x)' = x'$
 - b. $x \cdot (z + y) + (x' + y)' = x$
 - c. $(x \cdot y)' + x' \cdot z + y' \cdot z = x' + y'$
 - d. $x \cdot y + x' = y + x' \cdot y'$
 - e. $x \cdot y + y \cdot z \cdot x' = y \cdot z + y \cdot x \cdot z'$
- 13. Prove that in any Boolean algebra, $x \cdot y' + x' \cdot y = y$ if and only if x = 0.
- 14. Prove that in any Boolean algebra, $x \cdot y' = 0$ if and only if $x \cdot y = x$.
- 15. A new binary operation ⊕ in a Boolean algebra (exclusive OR) is defined by

$$x \oplus y = x \cdot y' + y \cdot x'$$

Prove that

- a. $x \oplus y = y \oplus x$
- b. $x \oplus x = 0$
- c. $0 \oplus x = x$
- d. $1 \oplus x = x'$
- 16. Prove that for any Boolean algebra:
 - a. If x + y = 0, then x = 0 and y = 0.
 - b. x = y if and only if $x \cdot y' + y \cdot x' = 0$.
- 17. Prove that the 0 element in any Boolean algebra is unique, prove that the 1 element in any Boolean algebra is unique.
- 18. a. Find an example of a Boolean algebra with elements x, y, and z for which x + y = x + z but $y \neq z$. (Here is further evidence that ordinary arithmetic of integers is not a Boolean algebra.)
 - b. Prove that in any Boolean algebra, if x + y = x + z and x' + y = x' + z, then y = z.
- 19. Let (S, \leq) and (S', \leq') be two partially ordered sets. (S, \leq) is isomorphic to (S', \leq') if there is a bijection $f: S \to S'$ such that for x, y in $S, x < y \to f(x) <' f(y)$ and $f(x) <' f(y) \to x < y$.
 - Show that there are exactly two nonisomorphic, partially ordered sets with two elements (use diagrams).
 - Show that there are exactly five nonisomorphic, partially ordered sets with three elements.
 - c. How many nonisomorphic, partially ordered sets with four elements are there?
- 20. Find an example of two partially ordered sets (S, \leq) and (S', \leq') and a bijection $f: S \to S'$ where, for x, y in $S, x < y \to f(x) <' f(y)$ but $f(x) <' f(y) \not\to x < y$.