Students reported at least three different ways that we might reasonably interpret that sentence (using the statement letters
\[ (C \longrightarrow J) \land (J \longrightarrow H) \] |
Inference (hs):
\(\longrightarrow\) |
\[ C \longrightarrow H \] |
We can illustrate the use of a temporary hypothesis to demonstrate that
\[ (C \longrightarrow J) \land (J \longrightarrow H) \] |
Inference:
\(\longrightarrow\) |
\[C \longrightarrow (J \land H)\]
Here we go:
|
Now let's negate the wff at left:
\[ [(C \longrightarrow J) \land (J \longrightarrow H)]' \] |
Equivalent to:
\(\leftrightarrow \) |
\[ (C \longrightarrow J)' \lor (J \longrightarrow H)' \] \[ (C' \lor J)' \lor (J' \lor H)' \] \[ (C \land J') \lor (J \land H') \] |
But notice that this is not the same as the negation of \(C \longrightarrow (J \land H)\):
\[ [C \longrightarrow (J \land H)]' \] |
Equivalent to:
\(\leftrightarrow\) |
\[ [C' \lor (J \land H)]' \] \[ C \land (J \land H)' \] \[ C \land (J \land H)' \] \[ C \land (J' \lor H') \] |