
Section 9.3: Finite-State Machines

April 28, 2022

Abstract

We model a machine as a set of states, inputs which lead to
a change in state, a clock to synchronize the machine world, and
outputs, which result from a particular state. We use tables and
graphs to describe how the inputs relate to changes in state and
the outputs of each state, then practice creating simple finite-
state machines.

Finite-state machines can be used to recognize input, and
we will look at the kinds of input that can be recognized, as
well as construct the machines that recognize given input. Fur-
thermore, some machines are overly complicated, in that we can
simplify them and get the same functionality. We will examine
some ways in which we can “minimize” (streamline) a finite-
state machine.

1 Finite-State Machines

Definition: A finite-state machine M is a structure [S, I, O, fs, fo]
where

Table 1: Elements of a finite-state machine.

S finite set of states of the machine
I input alphabet (finite set of symbols)
O output alphabet (finite set of symbols)
fs fs : S × I → S, the next-state function
fo fo : S → O, the output function

The machine is initialized to start in state s0, and the machine operates
deterministically (meaning that there is no randomness associated with
its operation, given a fixed sequence of inputs).



We assume discrete times, synchronized by a clock, so that

fs(state(ti), input(ti)) = state(ti+1)

and that
fo(state(ti)) = output(ti)

We represent fs and fo by state tables (e.g. Example 29: Table 9.1, p.
730), and state graphs (e.g. Figure 9.3, p. 730):

next state,

given input

Present state 0 1 Output

s0 s1 s0 0
s1 s2 s1 1
s2 s2 s0 1

Time t0 t1 t2 t3 t4 t5
Input 1 1 0 0 1 -
State s0

Output 0

A summary of these elements for Example 29:

Table 2: Elements of finite-state machine of Example 29, p. 730.

S {s0, s1, s2}
I {0,1}
O {0,1}

fs

fs(s0, 0) = s1, fs(s0, 1) = s0

fs(s1, 0) = s2, fs(s1, 1) = s1

fs(s2, 0) = s2, fs(s2, 1) = s0

fo fo(s0) = 0, fo(s1) = 1, fo(s2) = 1

Example: Practice 43, p. 731 . For the machine M of Example
29, what output sequence is produced by the input sequence 11001?
(Note: the state table corresponding to the state graph is in figure 9.3
- we could use either the table or the graph to generate the output
sequence.)



Example: Practice 44 and 45, p. 731

Example: Exercise 4, p. 751 : Write the state table for the ma-

chine, and compute the output sequence for the given input sequence:

next state,

given input

Present state 0 1 Output

s0 1
s1 0
s2 1
s3 0



2 Construction of a machine: the Binary

Adder

In section 8.2 we saw how one might create a logic network in hardware
for the addition of binary numbers. We now consider how this can be
incorporated into a finite-state machine which is analogous (pp. 731-
732).
We must specify the five elements of a finite-state machine: [S, I, O, fs, fo].
What is the set of states, what the set of inputs, what the set of outputs,
and how are the functions fs and fo defined?

If you recall the full binary adder, which added three binary digits,
there are four possible outcomes:

a. 00: carry 0, write 0

b. 01: carry 0, write 1

c. 10: carry 1, write 0

d. 11: carry 1, write 1

Now we just have to figure out

a. What the output should be, and

b. What the “next state” function looks like.

Example: Practice 47, p. 733 : Compute the sum of 01110110 and

01010101 by using the binary adder machine of Figure 9.5.



Now let’s try something a little different:

Example: Exercise 15(a), p. 752 This is a modification, in some
sense, of the binary adder. First of all, recognize that only one bit is
being stored: the author intends in this problem that the first bit in the
output sequence is the output of state s0, in which the machine started.
We need to “carry” the bit which we will write next time, and write
the current bit. We’ll solve this in two ways: in a sloppy way first, and
then in a better way - illustrating the need to be able to minimize a
finite-state machine.



3 Recognition

Definition: Finite-State Machine Recognition A finite-state ma-
chine M with input alphabet I recognizes a subset S of I∗ (the set of
finite-length strings over the input alphabet I) if M , beginning in state
s0 and processing an input string α, ends in a final state (a state with
output 1) if and only if α ∈ S.

Example: Practice 49, p. 735

Notes:

• Note the emphasis on the word “ends”: we assume that the input
stops, and when the input stops the final output is a 1.

• Note also the “if and only if”: this indicates that, if the output
ends in a 1, then the string α is in S; and if string α is in S, then
the output ends in a 1.

What kinds of input can a finite-state machine recognize? Regular
expressions. Regular expressions over I are defined recursively
by

a. the symbol ∅ and the symbol λ;

b. the symbol i for any i ∈ I; and

c. the expressions (AB), (A ∨ B), and (A)∗ if A and B are regular
expressions.



Example: Exercise #36, p. 755 : give a regular expression for the
set recognized by the finite-state machine.

Kleene’s Theorem assures us that a finite-state machine can recog-
nize a set S of input strings if and only if the set S is a regular set (that
is, a set represented by a regular expression).

Since some very reasonable sets are not regular (e.g. S = {0n1n},
where an stands for n copies of a), finite-state machines are obviously
not sufficient to understand all of computation.

Examples of regular sets given by regular expressions:

• #27b. The set of all strings beginning with 000:

• #28a. The set of all strings consisting entirely of any number (in-
cluding none) of 01 pairs or consisting entirely of two 1s followed
by any number (including none) of 0s:

• #28b. The set of all strings ending in 110:

• #28c. The set of all strings containing 00:

• #43b. The set of all strings of 0s and 1s having an odd number
of 0s:

Example: Exercise 26(b), p. 754 - recognition and minimization
motivation. Construct a finite-state machine that acts as recognizers
for the input described by producing an output of 1 exactly when the
input received to that point matches the description. The input and
output alphabet in each case is 0,1.

The set of all strings where the number of 0s is a multiple of 3.



Example: Exercise 25(b), p. 754 : Construct a finite-state machine

to recognize all strings consisting of two or more 1s followed by a single
0.

4 Machine Minimization

4.1 Unreachable States

One obvious way in which a machine can be minimized is if there is an
unreachable state: if so, then that state can certainly be trimmed
from the machine without any consequences (from the standpoint of
output). For example: Table 9.3, p. 738; and Figure 9.9, p. 738.

Example: Practice 52, p. 738

4.2 Equivalent States

It would be nice if we had some general way of minimizing a machine,
however. It turns out that we can find a minimized machine by using
the idea of equivalent states. The idea is that several redundant states
might operate in such confusing fashion that it appears there’s lots
going on, when there’s not!

In the first step, the unreachable states are removed. That’s the easy
part. Then we define

Equivalent States: two states si and sj of M are equivalent if, for
any α ∈ I∗, fo(si, α) = fo(sj , α) where by the awful notation fo(s, α)



we mean the sequence of output which occurs given that we start in
state s and receive input α.

(Our author seeds confusion by re-using notation: we are redefining fo

as a function from S × I∗ → O∗, where O∗ is finite strings of output.)

In order to find equivalent states, we define the notion of k-equivalency:
two states are k-equivalent if the machine matches output on an input
of k symbols to the two states.

a. States having the same output symbol are 0-equivalent.

b. For 1-equivalency, we check two 0-equivalent states to see that the
next-states under all input symbols (of length 1) are 0-equivalent.

c. For 2-equivalency, we check 1-equivalent states to see that the
next-states under all input symbols (of length 1) are 1-equivalent
- and hence equivalent for strings of length 2, total.

d. Etc.!

We iteratively step through equivalencies (from 0 on up): as soon as the
states do not change, from k-equivalency to (k+1)-equivalency, then we
have minimized our machine.

Best to look at a few examples!

Example: The sloppy delay machine of Exercise 15a:

state 0 1 out

s0 s1 s2 0
s1 s3 s4 0
s2 s5 s6 0
s3 s3 s4 0
s4 s5 s6 0
s5 s3 s4 1
s6 s5 s6 1

The set of states is divided up into subsets of the initial set which have
for their union the entire set S, and no common intersections. This is
called a partition of the set S. As we progress from 0-equivalency on
up, each subset can be divided, but none ever coalesce. There can be
partition refinement (finer partition) only.



Example: Exercise #65, p. 758

state 0 1 out

s0 s3 s6 1
s1 s4 s2 0
s2 s4 s1 0
s3 s2 s0 1
s4 s5 s0 1
s5 s3 s5 0
s6 s4 s2 1

Example: Exercise #67, p. 758

state 0 1 out

s0 s1 s2 0
s1 s2 s3 1
s2 s3 s4 0
s3 s2 s1 1
s4 s5 s4 1
s5 s6 s7 0
s6 s5 s6 1
s7 s8 s1 0
s8 s7 s3 0
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