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Abstract. We look at the circumstances and context of Cantor’s famous remark, “I see it, but
I don’t believe it.” We argue that, rather than denoting astonishment at his result, the remark
pointed to Cantor’s worry about the correctness of his proof.

Mathematicians love to tell each other stories. We tell them to our students too, and
they eventually pass them on. One of our favorites, and one that I heard as an under-
graduate, is the story that Cantor was so surprised when he discovered one of his the-
orems that he said “I see it, but I don’t believe it!” The suggestion was that sometimes
we might have a proof, and therefore know that something is true, but nevertheless still
find it hard to believe.

That sentence can be found in Cantor’s extended correspondence with Dedekind
about ideas that he was just beginning to explore. This article argues that what Can-
tor meant to convey was not really surprise, or at least not the kind of surprise that
is usually suggested. Rather, he was expressing a very different, if equally familiar,
emotion. In order to make this clear, we will look at Cantor’s sentence in the context
of the correspondence as a whole.

Exercises in myth-busting are often unsuccessful. As Joel Brouwer says in his poem
“A Library in Alexandria,”

. . . And so history gets written
to prove the legend is ridiculous. But soon the legend
replaces the history because the legend is more interesting.

Our only hope, then, lies in arguing not only that the standard story is false, but also
that the real story is more interesting.

1. THE SURPRISE. The result that supposedly surprised Cantor was the fact that
sets of different dimension could have the same cardinality. Specifically, Cantor
showed (of course, not yet using this language) that there was a bijection between the
interval I = [0, 1] and the n-fold product I n

= I × I × · · · × I .
There is no doubt, of course, that this result is “surprising,” i.e., that it is counter-

intuitive. In fact Cantor said so explicitly, pointing out that he had expected something
different. But the story has grown in the telling, and in particular Cantor’s phrase about
seeing but not believing has been read as expressing what we usually mean when we
see something happen and exclaim “Unbelievable!” What we mean is not that we
actually do not believe, but that we find what we know has happened to be hard to
believe because it is so unusual, unexpected, surprising. In other words, the idea is that
Cantor felt that the result was hard to believe even though he had a proof. His phrase
has been read as suggesting that mathematical proof may engender rational certainty
while still not creating intuitive certainty.

The story was then co-opted to demonstrate that mathematicians often discover
things that they did not expect or prove things that they did not actually want to prove.
For example, here is William Byers in How Mathematicians Think:
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Cantor himself initially believed that a higher-dimensional figure would have a
larger cardinality than a lower-dimensional one. Even after he had found the ar-
gument that demonstrated that cardinality did not respect dimensions: that one-,
two-, three-, even n-dimensional sets all had the same cardinality, he said, “I see
it, but I don’t believe it.” [2, p. 179]

Did Cantor’s comment suggest that he found it hard to believe his own theorem
even after he had proved it? Byers was by no means the first to say so.

Many mathematicians thinking about the experience of doing mathematics have
found Cantor’s phrase useful. In his preface to the original (1937) publication of the
Cantor-Dedekind correspondence, J. Cavaillès already called attention to the phrase:

. . . these astonishing discoveries—astonishing first of all to the author himself:
“I see it but I don’t believe it at all,”1 he writes in 1877 to Dedekind about one of
them—, these radically new notions . . . [14, p. 3, my translation]

Notice, however, that Cavaillès is still focused on the description of the result as
“surprising” rather than on the issue of Cantor’s psychology. It was probably Jacques
Hadamard who first connected the phrase to the question of how mathematicians think,
and so in particular to what Cantor was thinking. In his famous Essay on the Psychol-
ogy of Invention in the Mathematical Field, first published in 1945 (only eight years
after [14]), Hadamard is arguing about Newton’s ideas:

. . . if, strictly speaking, there could remain a doubt as to Newton’s example,
others are completely beyond doubt. For instance, it is certain that Georg Cantor
could not have foreseen a result of which he himself says “I see it, but I do not
believe it.” [10, pp. 61–62].

Alas, when it comes to history, few things are “certain.”

2. THE MAIN CHARACTERS. Our story plays out in the correspondence between
Richard Dedekind and Georg Cantor during the 1870s. It will be important to know
something about each of them.

Richard Dedekind was born in Brunswick on October 6, 1831, and died in the same
town, now part of Germany, on February 12, 1916. He studied at the University of
Göttingen, where he was a contemporary and friend of Bernhard Riemann and where
he heard Gauss lecture shortly before the old man’s death. After Gauss died, Lejeune
Dirichlet came to Göttingen and became Dedekind’s friend and mentor.

Dedekind was a very creative mathematician, but he was not particularly ambitious.
He taught in Göttingen and in Zurich for a while, but in 1862 he returned to his home
town. There he taught at the local Polytechnikum, a provincial technical university. He
lived with his brother and sister and seemed uninterested in offers to move to more
prestigious institutions. See [1] for more on Dedekind’s life and work.

Our story will begin in 1872. The first version of Dedekind’s ideal theory had ap-
peared as Supplement X to Dirichlet’s Lectures in Number Theory (based on actual
lectures by Dirichlet but entirely written by Dedekind). Also just published was one
of his best known works, “Stetigkeit und Irrationalzahlen” (“Continuity and Irrational
Numbers”; see [7]; an English translation is included in [5]). This was his account of
how to construct the real numbers as “cuts.” He had worked out the idea in 1858, but
published it only 14 years later.

1Cavaillès misquotes Cantor’s phrase as “je le vois mais je ne le crois point.”
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Georg Cantor was born in St. Petersburg, Russia, on March 3, 1845. He died in
Halle, Germany, on January 6, 1918. He studied at the University of Berlin, where the
mathematics department, led by Karl Weierstrass, Ernst Eduard Kummer, and Leopold
Kronecker, might well have been the best in the world. His doctoral thesis was on the
number theory of quadratic forms.

In 1869, Cantor moved to the University of Halle and shifted his interests to the
study of the convergence of trigonometric series. Very much under Weierstrass’s in-
fluence, he too introduced a way to construct the real numbers, using what he called
“fundamental series.” (We call them “Cauchy sequences.”) His paper on this construc-
tion also appeared in 1872.

Cantor’s lifelong dream seems to have been to return to Berlin as a professor, but
it never happened. He rose through the ranks in Halle, becoming a full professor in
1879 and staying there until his death. See [13] for a short account of Cantor’s life.
The standard account of Cantor’s mathematical work is [4].

Cantor is best known, of course, for the creation of set theory, and in particular for
his theory of transfinite cardinals and ordinals. When our story begins, this was mostly
still in the future. In fact, the birth of several of these ideas can be observed in the
correspondence with Dedekind. This correspondence was first published in [14]; we
quote it from the English translation by William Ewald in [8, pp. 843–878].

3. “ALLOW ME TO PUT A QUESTION TO YOU.” Dedekind and Cantor met in
Switzerland when they were both on vacation there. Cantor had sent Dedekind a copy
of the paper containing his construction of the real numbers. Dedekind responded, of
course, by sending Cantor a copy of his booklet. And so begins the story.

Cantor was 27 years old and very much a beginner, while Dedekind was 41 and at
the height of his powers; this accounts for the tone of deference in Cantor’s side of
the correspondence. Cantor’s first letter acknowledged receipt of [7] and says that “my
conception [of the real numbers] agrees entirely with yours,” the only difference being
in the actual construction. But on November 29, 1873, Cantor moves on to new ideas:

Allow me to put a question to you. It has a certain theoretical interest for me, but
I cannot answer it myself; perhaps you can, and would be so good as to write me
about it. It is as follows.

Take the totality of all positive whole-numbered individuals n and denote it
by (n). And imagine, say, the totality of all positive real numerical quantities x
and designate it by (x). The question is simply, Can (n) be correlated to (x) in
such a way that to each individual of the one totality there corresponds one and
only one of the other? At first glance one says to oneself no, it is not possible, for
(n) consists of discrete parts while (x) forms a continuum. But nothing is gained
by this objection, and although I incline to the view that (n) and (x) permit no
one-to-one correlation, I cannot find the explanation which I seek; perhaps it is
very easy.

In the next few lines, Cantor points out that the question is not as dumb as it looks,
since “the totality

( p
q

)
of all positive rational numbers” can be put in one-to-one cor-

respondence with the integers.
We do not have Dedekind’s side of the correspondence, but his notes indicate that

he responded indicating that (1) he could not answer the question either, (2) he could
show that the set of all algebraic numbers is countable, and (3) that he didn’t think the
question was all that interesting. Cantor responded on December 2:
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I was exceptionally pleased to receive your answer to my last letter. I put my
question to you because I had wondered about it already several years ago, and
was never certain whether the difficulty I found was subjective or whether it was
inherent in the subject. Since you write that you too are unable to answer it, I may
assume the latter.—In addition, I should like to add that I have never seriously
occupied myself with it, because it has no special practical interest for me. And
I entirely agree with you when you say that for this reason it does not deserve
much effort. But it would be good if it could be answered; e.g., if it could be
answered with no, then one would have a new proof of Liouville’s theorem that
there are transcendental numbers.

Cantor first concedes that perhaps it is not that interesting, then immediately points
out an application that was sure to interest Dedekind! In fact, Dedekind’s notes indi-
cate that it worked: “But the opinion I expressed that the first question did not deserve
too much effort was conclusively refuted by Cantor’s proof of the existence of tran-
scendental numbers.” [8, p. 848]

These two letters are fairly typical of the epistolary relationship between the two
men: Cantor is deferential but is continually coming up with new ideas, new questions,
new proofs; Dedekind’s role is to judge the value of the ideas and the correctness of
the proofs. The very next letter, from December 7, 1873, contains Cantor’s first proof
of the uncountability of the real numbers. (It was not the “diagonal” argument; see [4]
or [9] for the details.)

4. “THE SAME TRAIN OF THOUGHT . . . ” Cantor seemed to have a good sense
for what question should come next. On January 5, 1874, he posed the problem of
higher-dimensional sets:

As for the question with which I have recently occupied myself, it occurs to me
that the same train of thought also leads to the following question:

Can a surface (say a square including its boundary) be one-to-one correlated
to a line (say a straight line including its endpoints) so that to every point of the
surface there corresponds a point of the line, and conversely to every point of the
line there corresponds a point of the surface?

It still seems to me at the moment that the answer to this question is very
difficult—although here too one is so impelled to say no that one would like to
hold the proof to be almost superfluous.

Cantor’s letters indicate that he had been asking others about this as well, and that
most considered the question just plain weird, because it was “obvious” that sets of
different dimensions could not be correlated in this way. Dedekind, however, seems to
have ignored this question, and the correspondence went on to other issues. On May
18, 1874, Cantor reminded Dedekind of the question, and seems to have received no
answer.

The next letter in the correspondence is from May, 1877. The correspondence seems
to have been reignited by a misunderstanding of what Dedekind meant by “the essence
of continuity” in [7]. On June 20, 1877, however, Cantor returns to the question of
bijections between sets of different dimensions, and now proposes an answer:

. . . I should like to know whether you consider an inference-procedure that I use
to be arithmetically rigorous.

The problem is to show that surfaces, bodies, indeed even continuous struc-
tures of ρ dimensions can be correlated one-to-one with continuous lines, i.e.,
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with structures of only one dimension—so that surfaces, bodies, indeed even
continuous structures of ρ dimension have the same power as curves. This idea
seems to conflict with the one that is especially prevalent among the represen-
tatives of modern geometry, who speak of simply infinite, doubly, triply, . . . ,
ρ-fold infinite structures. (Sometimes you even find the idea that the infinity of
points of a surface or a body is obtained as it were by squaring or cubing the
infinity of points of a line.)

Significantly, Cantor’s formulation of the question had changed. Rather than asking
whether there is a bijection, he posed the question of finding a bijection. This is, of
course, because he believed he had found one. By this point, then, Cantor knows the
right answer. It remains to give a proof that will convince others. He goes on to explain
his idea for that proof, working with the ρ-fold product of the unit interval with itself,
but for our purposes we can consider only the case ρ = 2.

The proof Cantor proposed is essentially this: take a point (x, y) in [0, 1] × [0, 1],
and write out the decimal expansions of x and y:

(x, y) = (0.abcde . . . , 0.αβγ δε . . . ).

Some real numbers have more than one decimal expansion. In that case, we always
choose the expansion that ends in an infinite string of 9s. Cantor’s idea is to map (x, y)
to the point z ∈ [0, 1] given by

z = 0.aαbβcγ dδeε . . .

Since we can clearly recover x and y from the decimal expansion of z, this gives the
desired correspondence.

Dedekind immediately noticed that there was a problem. On June 22, 1877 (one
cannot fail to be impressed with the speed of the German postal service!), he wrote
back pointing out a slight problem “which you will perhaps solve without difficulty.”
He had noticed that the function Cantor had defined, while clearly one-to-one, was not
onto. (Of course, he did not use those words.) Specifically, he pointed out that such
numbers as

z = 0.120101010101 . . .

did not correspond to any pair (x, y), because the only possible value for x is
0.100000 . . . , which is disallowed by Cantor’s choice of decimal expansion. He
was not sure if this was a big problem, adding “I do not know if my objection goes to
the essence of your idea, but I did not want to hold it back.”

Of course, the problem Dedekind noticed is real. In fact, there are a great many real
numbers not in the image, since we can replace the ones that separate the zeros with
any sequence of digits. The image of Cantor’s map is considerably smaller than the
whole interval.

Cantor’s first response was a postcard sent the following day. (Can one envision him
reading the letter at the post office and immediately dispatching a postcard back?) He
acknowledged the error and suggested a solution:

Alas, you are entirely correct in your objection; but happily it concerns only the
proof, not the content. For I proved somewhat more than I had realized, in that I
bring a system x1, x2, . . . , xρ of unrestricted real variables (that are≥ 0 and≤ 1)
into one-to-one relationship with a variable y that does not assume all values of
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that interval, but rather all with the exception of certain y′′. However, it assumes
each of the corresponding values y′ only once, and that seems to me to be the
essential point. For now I can bring y′ into a one-to-one relation with another
quantity t that assumes all the values ≥ 0 and ≤ 1.

I am delighted that you have found no other objections. I shall shortly write
to you at greater length about this matter.

This is a remarkable response. It suggests that Cantor was very confident that his
result was true. This confidence was due to the fact that Cantor was already thinking
in terms of what later became known as “cardinality.” Specifically, he expects that the
existence of a one-to-one mapping from one set A to another set B implies that the
size of A is in some sense “less than or equal to” that of B.

Cantor’s proof shows that the points of the square can be put into bijection with a
subset of the interval. Since the interval can clearly be put into bijection with a subset
of the square, this strongly suggests that both sets of points “are the same size,” or,
as Cantor would have said it, “have the same power.” All we need is a proof that the
“powers” are linearly ordered in a way that is compatible with inclusions.

That the cardinals are indeed ordered in this way is known today as the Schroeder-
Bernstein theorem. The postcard shows that Cantor already “knew” that the Schroeder-
Bernstein theorem should be true. In fact, he seems to implicitly promise a proof of
that very theorem. He was not able to find such a proof, however, then or (as far as I
know) ever.

His fuller response, sent two days later on June 25, contained instead a completely
different, and much more complicated, proof of the original theorem.

I sent you a postcard the day before yesterday, in which I acknowledged the
gap you discovered in my proof, and at the same time remarked that I am able
to fill it. But I cannot repress a certain regret that the subject demands more
complicated treatment. However, this probably lies in the nature of the subject,
and I must console myself; perhaps it will later turn out that the missing portion
of that proof can be settled more simply than is at present in my power. But since
I am at the moment concerned above all to persuade you of the correctness of
my theorem . . . I allow myself to present another proof of it, which I found even
earlier than the other.

Notice that what Cantor is trying to do here is to convince Dedekind that his theorem
is true by presenting him a correct proof.2 There is no indication that Cantor had any
doubts about the correctness of the result itself. In fact, as we will see, he says so
himself.

Let’s give a brief account of Cantor’s proof; to avoid circumlocutions, we will ex-
press most of it in modern terms. Cantor began by noting that every real number x
between 0 and 1 can be expressed as a continued fraction

x =
1

a +
1

b +
1

c + · · ·

2Cantor claimed he had found this proof before the other. I find this hard to believe. In fact, the proof
looks very much like the result of trying to fix the problem in the first proof by replacing (nonunique) decimal
expansions with (unique) continued fraction expansions.
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where the partial quotients a, b, c, . . . , etc. are all positive integers. This representation
is infinite if and only if x is irrational, and in that case the representation is unique.

So one can argue just as before, “interleaving” the two continued fractions for x
and y, to establish a bijection between the set of pairs (x, y) such that both x and y
are irrational and the set of irrational points in [0, 1]. The result is a bijection because
the inverse mapping, splitting out two continued fraction expansions from a given one,
will certainly produce two infinite expansions.

That being done, it remains to be shown that the set of irrational numbers between
0 and 1 can be put into bijection with the interval [0, 1]. This is the hard part of the
proof. Cantor proceeded as follows.

First he chose an enumeration of the rationals {rk} and an increasing sequence of
irrationals {ηk} in [0, 1] converging to 1. He then looked at the bijection from [0, 1] to
[0, 1] that is the identity on [0, 1] except for mapping rk 7→ ηk , ηk 7→ rk . This gives a
bijection between irrationals in [0, 1] and [0, 1] minus the sequence {ηk} and reduces
the problem to proving that [0, 1] can be put into bijection with [0, 1] − {ηk}.

At this point Cantor claims that it is now enough to “successively apply” the fol-
lowing theorem:

A number y that can assume all the values of the interval (0 . . . 1) with the soli-
tary exception of the value 0 can be correlated one-to-one with a number x that
takes on all values of the interval (0 . . . 1) without exception.

In other words, he claimed that there was a bijection between the half-open interval
(0, 1] and the closed interval [0, 1], and that “successive application” of this fact would
finish the proof. In the actual application he would need the intervals to be open on the
right, so, as we will see, he chose a bijection that mapped 1 to itself.

Cantor did not say exactly what kind of “successive application” he had in mind,
but what he says in a later letter suggests it was this: we have the interval [0, 1] minus
the sequence of the ηk . We want to “put back in” the ηk , one at a time. So we leave
the interval [0, η1) alone, and look at (η1, η2). Applying the lemma, we construct a
bijection between that and [η1, η2). Then we do the same for (η2, η3) and so on. Putting
together these bijections produces the bijection we want.

Finally, it remained to prove the lemma, that is, to construct the bijection from [0, 1]
to (0, 1]. Modern mathematicians would probably do this by choosing a sequence xn

in (0, 1), mapping 0 to x1 and then every xn to xn+1. This “Hilbert hotel” idea was still
some time in the future, however, even for Cantor. Instead, Cantor chose a bijection
that could be represented visually, and simply drew its graph. He asked Dedekind to
consider “the following peculiar curve,” which we have redrawn in Figure 1 based on
the photograph reproduced in [4, p. 63].

Such a picture requires some explanation, and Cantor provided it. The domain
has been divided by a geometric progression, so b = 1/2, b1 = 3/4, and so on;
a = (0, 1/2), a′ = (1/2, 3/4), etc. The point C is (1, 1). The points d ′ = (1/2, 1/2),
d ′′ = (3/4, 3/4), etc. give the corresponding subdivision of the main diagonal.

The curve consists of infinitely many parallel line segments ab, a′b′, a′′b′′ and
of the point c. The endpoints b, b′, b′′, . . . are not regarded as belonging to the
curve.

The stipulation that the segments are open at their lower endpoints means that 0 is not
in the image. This proves the lemma, and therefore the proof is finished.
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Figure 1. Cantor’s function from [0, 1] to (0, 1].

Cantor did not even add that last comment. As soon as he had explained his curve, he
moved on to make extensive comments on the theorem and its implications. He turns
on its head the objection that various mathematicians made to his question, namely
that it was “obvious” from geometric considerations that the number of variables is
invariant:

For several years I have followed with interest the efforts that have been made,
building on Gauss, Riemann, Helmholtz, and others, towards the clarification of
all questions concerning the ultimate foundations of geometry. It struck me that
all the important investigations in this field proceed from an unproven presuppo-
sition which does not appear to me self-evident, but rather to need a justification.
I mean the presupposition that a ρ-fold extended continuous manifold needs ρ
independent real coordinates for the determination of its elements, and that for
a given manifold this number of coordinates can neither be increased nor de-
creased.

This presupposition became my view as well, and I was almost convinced of
its correctness. The only difference between my standpoint and all the others
was that I regarded that presupposition as a theorem which stood in great need
of a proof; and I refined my standpoint into a question that I presented to several
colleagues, in particular at the Gauss Jubilee in Göttingen. The question was the
following:

“Can a continuous structure of ρ dimensions, where ρ > 1, be related one-
to-one with a continuous structure of one dimension so that to each point of the
former there corresponds one and only one point of the latter?”

Most of those to whom I presented this question were extremely puzzled that
I should ask it, for it is quite self-evident that the determination of a point in an
extension of ρ dimensions always needs ρ independent coordinates. But who-
ever penetrated the sense of the question had to acknowledge that a proof was
needed to show why the question should be answered with the “self-evident”
no. As I say, I myself was one of those who held it for the most likely that the
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question should be answered with a no—until quite recently I arrived by rather
intricate trains of thought at the conviction that the answer to that question is
an unqualified yes.3 Soon thereafter I found the proof which you see before you
today.

So one sees what wonderful power lies in the ordinary real and irrational num-
bers, that one is able to use them to determine uniquely the elements of a ρ-fold
extended continuous manifold with a single coordinate. I will only add at once
that their power goes yet further, in that, as will not escape you, my proof can be
extended without any great increase in difficulty to manifolds with an infinitely
great dimension-number, provided that their infinitely-many dimensions have the
form of a simple infinite sequence.

Now it seems to me that all philosophical or mathematical deductions that use
that erroneous presupposition are inadmissible. Rather the difference that ob-
tains between structures of different dimension-number must be sought in quite
other terms than in the number of independent coordinates—the number that was
hitherto held to be characteristic.

5. “JE LE VOIS . . . ” So now Dedekind had a lot to digest. The interleaving argu-
ment is not problematic in this case, and the existence of a bijection between the ra-
tionals and the increasing sequence ηk had been established in 1872. But there were at
least two sticky points in Cantor’s letter.

First, there is the matter of what kind of “successive application” of the lemma
Cantor had in mind. Whatever it was, it would seem to involve constructing a bijection
by “putting together” an infinite number of functions. One can easily get in trouble.

For example, here is an alternative reading of what Cantor had in mind. Instead
of applying the lemma to the interval (η1, η2), we could apply it to (0, η1) to put it
into bijection with (0, η1]. So now we have “put η1 back in” and we have a bijection
between [0, 1] − {η1, η2, η3, . . . } and [0, 1] − {η2, η3, . . . }.

Now repeat: use the lemma on (0, η2) to make a bijection to (0, η2]. So we have “put
η2 back in.” If we keep doing that, we presumably get a bijection from (0, 1) minus
the ηk to all of (0, 1).

But do we? What is the image of, say, 1
3η1? It is not fixed under any of our functions.

To determine its image in [0, 1], we would need to compose infinitely many functions,
and it’s not clear how to do that. If we manage to do it with some kind of limiting
process, then it is no longer clear that the overall function is a bijection.

The interpretation Cantor probably intended (and later stated explicitly) yields a
workable argument because the domains of the functions are disjoint, so it is clear
where to map any given point. But since Cantor did not indicate his argument in this
letter, one can imagine Dedekind hesitating. In any case, at this point in history the
idea of constructing a function out of infinitely many pieces would have been both
new and worrying.

The second sticky point was Cantor’s “application” of his theorem to undermine
the foundations of geometry. This is, of course, the sort of thing one has to be careful
about. And it is clear, from Dedekind’s eventual response to Cantor, that it concerned
him.

Dedekind took longer than usual to respond. Having already given one wrong proof,
Cantor was anxious to hear a “yes” from Dedekind, and so he wrote again on June 29:

3The original reads “. . . bis ich vor ganz kurzer Zeit durch ziemlich verwickelte Gedankereihen zu der Ue-
berzeugung gelangte, dass jene Frage ohne all Einschränkgung zu bejahen ist.” Note Cantor’s Überzeugung—
conviction, belief, certainty.
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Please excuse my zeal for the subject if I make so many demands upon your
kindness and patience; the communications which I lately sent you are even for
me so unexpected, so new, that I can have no peace of mind until I obtain from
you, honoured friend, a decision about their correctness. So long as you have not
agreed with me, I can only say: je le vois, mais je ne le crois pas. And so I ask
you to send me a postcard and let me know when you expect to have examined
the matter, and whether I can count on an answer to my quite demanding request.

So here is the phrase. The letter is, of course, in German, but the famous “I see it,
but I don’t believe it” is in French.4 Seen in its context, the issue is clearly not that
Cantor was finding it hard to believe his result. He was confident enough about that
to think he had rocked the foundations of the geometry of manifolds. Rather, he felt
a need for confirmation that his proof was correct. It was his argument that he saw
but had trouble believing. This is confirmed by the rest of the letter, in which Cantor
spelled out in detail the most troublesome step, namely, how to “successively apply”
his lemma to construct the final bijection.

So the famous phrase does not really provide an example of a mathematician having
trouble believing a theorem even though he had proved it. Cantor, in fact, seems to have
been confident [überzeugt!] that his theorem was true, as he himself says. He had in
hand at least two arguments for it: the first argument, using the decimal expansion,
required supplementation by a proof of the Schroeder-Bernstein theorem, but Cantor
was quite sure that this would eventually be proved. The second argument was correct,
he thought, but its complicated structure might have allowed something to slip by him.

He knew that his theorem was a radically new and surprising result—it would cer-
tainly surprise others!—and thus it was necessary that the proof be as solid as possible.
The earlier error had given Cantor reason to worry about the correctness of his argu-
ment, leaving Cantor in need of his friend’s confirmation before he would trust the
proof.

Cantor was, in fact, in a position much like that of a student who has proposed
an argument, but who knows that a proof is an argument that convinces his teacher.
Though no longer a student, he knows that a proof is an argument that will convince
others, and that in Dedekind he had the perfect person to find an error if one were
there. So he saw, but until his friend’s confirmation he did not believe.

6. WHAT CAME NEXT. So why did Dedekind take so long to reply? From the
evidence of his next letter, dated July 2, it was not because he had difficulty with the
proof. His concern, rather, was Cantor’s challenge to the foundations of geometry.

The letter opens with a sentence clearly intended to allay Cantor’s fears: “I have
examined your proof once more, and I have discovered no gap in it; I am quite certain
that your interesting theorem is correct, and I congratulate you on it.” But Dedekind
did not accept the consequences Cantor seemed to find:

However, as I already indicated in the postcard, I should like to make a remark
that counts against the conclusions concerning the concept of a manifold of ρ
dimensions that you append in your letter of 25 June to the communication and
the proof of the theorem. Your words make it appear—my interpretation may be
incorrect—as though on the basis of your theorem you wish to cast doubt on the
meaning or the importance of this concept . . .

4I don’t know whether this is because of the rhyme vois/crois, or because of the well-known phrase “voir,
c’est croire,” or for some other reason. I do not believe the phrase was already proverbial.
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Against this, I declare (despite your theorem, or rather in consequence of re-
flections that it stimulated) my conviction or my faith (I have not yet had time
even to make an attempt at a proof) that the dimension-number of a continu-
ous manifold remains its first and most important invariant, and I must defend
all previous writers on the subject . . . For all authors have clearly made the
tacit, completely natural presupposition that in a new determination of the points
of a continuous manifold by new coordinates, these coordinates should also (in
general) be continuous functions of the old coordinates . . .

Dedekind pointed out that, in order to establish his correspondence, Cantor had
been “compelled to admit a frightful, dizzying discontinuity in the correspondence,
which dissolves everything to atoms, so that every continuously connected part of one
domain appears in its image as thoroughly decomposed and discontinuous.” He then
set out a new conjecture that spawned a whole research program:

. . . for the time being I believe the following theorem: “If it is possible to establish
a reciprocal, one-to-one, and complete correspondence between the points of a
continuous manifold A of a dimensions and the points of a continuous manifold
B of b dimensions, then this correspondence itself, if a and b are unequal, is
necessarily utterly discontinuous.”

In his next letter, Cantor claimed that this was indeed his point: where Riemann and
others had casually spoken of a space that requires n coordinates as if that number was
known to be invariant, he felt that this invariance required proof. “Far from wishing to
turn my result against the article of faith of the theory of manifolds, I rather wish to
use it to secure its theorems,” he wrote. The required theorem turned out to be true,
indeed, but proving it took much longer than either Cantor or Dedekind could have
guessed: it was finally proved by Brouwer in 1910. The long and convoluted story of
that proof can be found in [3], [11], and [12].

Finally, one should point out that it was only some three months later that Cantor
found what most modern mathematicians consider the “obvious” way to prove that
there is a bijection between the interval minus a countable set and the whole interval.
In a letter dated October 23, 1877, he took an enumeration φν of the rationals and let
ην =

√
2/2ν . Then he constructed a map from [0, 1] sending ην to η2ν−1, φν to η2ν , and

every other point h to itself, thus getting a bijection between [0, 1] and the irrational
numbers between 0 and 1.

7. MATHEMATICS AS CONVERSATION. Is the real story more interesting than
the story of Cantor’s surprise? Perhaps it is, since it highlights the social dynamic that
underlies mathematical work. It does not render the theorem any less surprising, but
shifts the focus from the result itself to its proof.

The record of the extended mathematical conversation between Cantor and Dede-
kind reminds us of the importance of such interaction in the development of mathe-
matics. A mathematical proof is, after all, a kind of challenge thrown at an idealized
opponent, a skeptical adversary that is reluctant to be convinced. Often, this adversary
is actually a colleague or collaborator, the first reader and first critic.

A proof is not a proof until some reader, preferably a competent one, says it is. Until
then we may see, but we should not believe.
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