derivatives we know, and list the derivatives. Then write a composite function with the inner function being an unknown function u(x) and the outer function being a basic function. Finally, write the chain rule for the composite function. The following example illustrates this for two different functions.

Example 2.5.8. To determine

$$\frac{d}{dx}[\sin(u(x))],$$

where u is a differentiable function of x, we use the chain rule with the sine function as the outer function. Applying the chain rule, we find that

stuff =
$$5x$$

The stuff = $5x$

$$\frac{d}{dx}[\sin(u(x))] = \cos(u(x)) \cdot u'(x).$$

This rule is analogous to the basic derivative rule that $\frac{d}{dx}[\sin(x)] = \cos(x)$.

Similarly, since $rac{d}{dx}[a^x] = a^x \ln(a)$, it follows by the chain rule that

$$rac{d}{dx}[a^{u(x)}] = a^{u(x)} \ln(a) \cdot u'(x).$$

This rule is analogous to the basic derivative rule that $\frac{d}{dx}[a^x] = a^x \ln(a)$.

2.5.4 Summary

- ullet A composite function is one where the input variable x first passes through one function, and then the resulting output passes through another. For example, the function $h(x)=2^{\sin(x)}$ is composite since $2\sin(x)$ $\sin(x)$ x >
- ullet Given a composite function C(x)=f(g(x)) where f and g are f(x)= p(x). q(x) where

 p(x)= e5x differentiable functions, the chain rule tells us that

$$C'(x) = f'(g(x))g'(x).$$

2.5.5 Exercises

1. Mixing rules: chain, product, sum.

Activate

Find the derivative of

1. Mixing rules: chain, product, sum.

Activate
Find the derivative of

$$f(x) = e^{5x}(x^2 + 7^x)$$

$$f'(x) = \frac{e^{5x}(5x^2 + 2x + \frac{1}{2}x^2 + \frac{1}{$$

Use the graph below to find exact values of the indicated derivatives, or state that they do not exist. If a derivative does not exist, enter **dne** in the answer blank. The graph of f(x) is black and has a sharp corner at x=2. The graph of g(x) is blue.

Let
$$h(x) = f(g(x))$$
. Find

A.
$$h'(1) = f'(g(1)) \cdot g'(1) = f'(4) \cdot (-4) = 2(-4) = -\frac{1}{2}$$

B. $h'(2) = f'(g(3)) \cdot g'(2) = f'(4) \cdot (-4) = 2 \cdot (-4) = -\frac{1}{2}$

C. $h'(3) = f'(g(3)) \cdot g'(3) = f'(4) \cdot (-4) = 2 \cdot (-4) = -\frac{1}{2}$

(Enter dne for any derivative that does not exist.)

6. Chain rule with function values.

Activate

Given F(4)=1, F'(4)=5, F(5)=4, F'(5)=6 and G(1)=3, G'(1)=4, G(4)=5, G'(4)=6, find each of the following. (Enter **dne** for any derivative that cannot be computed from this information alone.)

A.
$$H(4)$$
 if $H(x) = F(G(x))$ $H(4) = F(G(4)) = F(5) = 4$

B. $H'(4)$ if $H(x) = F(G(x))$ $H'(4) = F'(G(4)) \cdot G'(4) = F'(5) \cdot 6 = 6 \cdot 6 = 36$

C. $H(4)$ if $H(x) = G(F(x))$ $H(4) = G(F(4)) = G(1) = 3$

D. $H'(4)$ if $H(x) = G(F(x))$ $H'(4) = G'(F(4)) \cdot F'(4) = G'(1) \cdot 5 = 4 \cdot 5 = 70$

E.
$$H'(4)$$
 if $H(x) = F(x)/G(x)$ $H'(4) = G(4)F'(4) - G'(4)F(4) = 5.5 - 6.1 = 19 / 25$

a. Let
$$h(x)=f(g(x))$$
. Find the exact instantaneous rate of change of h at the point where $x=\frac{\pi}{4}$. $h'(x)=f'(g(x))$ $g'(x)$ $h'(\overline{\mathcal{I}}_4)=f'(g(x))$ $g'(x)$ b. Which function is changing most rapidly at $x=0.25$: $h(x)=f(g(x))$ or

b. Which function is changing most rapidly at
$$x=0.25$$
: $h(x)=f(g(x))$ or $f'(x)=g(f(x))$? Why?
$$f'(x)=g(f(x))$$
 c. Let $f'(x)=f(g(x))$ and $f'(x)=g(f(x))$. Which of these functions has a

c. Let
$$h(x) = f(g(x))$$
 and $r(x) = g(f(x))$. Which of these functions has a derivative that is periodic? Why?

9. Let
$$u(x)$$
 be a differentiable function. For each of the following functions, determine the derivative. Each response will involve u and/or u' .

a.
$$p(x) = e^{u(x)}$$
b. $q(x) = u(e^x)$
c. $r(x) = \cot(u(x))$

$$p'(x) = u'(x)$$

$$q'(x) = u'(e^x) \cdot (e^x)' = u'(e^x) \cdot e^x$$

$$q'(x) = \cot(u(x)) \cdot (e^x)' = u'(e^x) \cdot e^x$$

$$d. \ s(x) = u(\cot(x)) \quad \leq '(x) = u'(\cot(x)) \cdot \left(-\csc(x)\right)$$

$$o. \ s(x) = u(x^4) \quad o. \ (x^4) \quad o. \ ($$

10. Let functions p and q be the piecewise linear functions given by their respective graphs in Figure 2.5.9. Use the graphs to answer the following questions.

$$8c, h(x) = \frac{p}{3}$$
 $(\sin(x))^{3}$ is
 1
 $periodic; -3 -2 -1 1 2 3$
 $sin(x^{3})$ is
 q
 -2
 $not,$

 $r'(x) = g'(f(x)) \cdot f'(x)$ = 605 (x3) · 3x² h'(.25) = .178 r'(.25) = .187 r = .187r = .187

Homework (Section 2.5): Chain Rule

Andy Long, Spring 2024

- **8.** Consider the basic functions $f(x) = x^3$ and $g(x) = \sin(x)$.
 - a. Let h(x)=f(g(x)). Find the exact instantaneous rate of change of h at the point where $x=\frac{\pi}{4}$.
 - b. Which function is changing most rapidly at x=0.25: h(x)=f(g(x)) or r(x)=g(f(x))? Why?
 - c. Let h(x)=f(g(x)) and r(x)=g(f(x)). Which of these functions has a derivative that is periodic? Why?

```
a.
In[3225]:= Clear[x]
       f[x_] := x^3
       g[x_] := Sin[x]
       h[x_] := f[g[x]]
       h'[x]
       h'[Pi/4]
Out[3229]= 3 \cos[x] \sin[x]^2
Out[3230]= -
        b.
ln[3231] := h'[x]
       r[x_] := g[f[x]]
       r'[x]
       h'[.25]
       r'[.25]
Out[3231]= 3 \cos[x] \sin[x]^2
Out[3233]= 3 x^2 \cos [x^3]
Out[3234]= 0.177917664627618
Out[3235]= 0.187477112282064
       c. h'(x) is periodic....
```

11. If a spherical tank of radius 4 feet has h feet of water present in the tank, then the volume of water in the tank is given by the formula

$$V=rac{\pi}{3}h^2(12-h).$$

- a. At what instantaneous rate is the volume of water in the tank changing with respect to the height of the water at the instant h=1? What are the units on this quantity?
- b. Now suppose that the height of water in the tank is being regulated by an inflow and outflow (e.g., a faucet and a drain) so that the height of the water at time t is given by the rule $h(t) = \sin(\pi t) + 1$, where t is measured in hours (and t is still measured in feet). At what rate is the height of the water changing with respect to time at the instant t=2?
- c. Continuing under the assumptions in (b), at what instantaneous rate is the volume of water in the tank changing with respect to $\it time$ at the instant $\it t=2$?
- d. What are the main differences between the rates found in (a) and (c)? Include a discussion of the relevant units.

a.

 $\label{eq:local_$

d. The rate in part (a) is the rate of change of Volume with respect to height... (ft) 3 /ft = ft 2 ; when we have the height as a function of time, we can ask what is the rate of change of Volume with respect to time.... (ft) 3 /hour