particular, if f(a)=g(a)=0 and f and g are differentiable at a, L'Hôpital's Rule tells us that

$$\lim_{x o a}rac{f(x)}{g(x)}=\lim_{x o a}rac{f'(x)}{g'(x)}.$$

- When we write $x\to\infty$, this means that x is increasing without bound. Thus, $\lim_{x\to\infty}f(x)=L$ means that we can make f(x) as close to L as we like by choosing x to be sufficiently large. Similarly, $\lim_{x\to a}f(x)=\infty$, means that we can make f(x) as large as we like by choosing x sufficiently close to a.
- A version of L'Hôpital's Rule also helps us evaluate indeterminate limits of the form $\frac{\infty}{\infty}$. If f and g are differentiable and both approach zero or both approach $\pm \infty$ as $x \to a$ (where a is allowed to be ∞), then

$$\lim_{x o a}rac{f(x)}{g(x)}=\lim_{x o a}rac{f'(x)}{g'(x)}.$$

2.8.4 Exercises

1. L'Hôpital's Rule with graphs.

Activate

For the figures below, determine the nature of $\lim_{x\to a} \frac{f(x)}{g(x)}$, if f(x) is shown as the blue curve and g(x) as the black curve.

2. L'Hôpital's Rule to evaluate a limit.

Activate Find the limit: $\lim_{x \to 4} \frac{\ln(x/4)}{x^2 - 16} = \frac{f'(4)}{f'(4)} = \frac{f'(4)}{g}$

 $f'(x) = 4 \cdot (x_4) = 1$ g'(x) = 2x

(Enter **undefined** if the limit does not exist.)

3. Determining if L'Hôpital's Rule applies.

Activate

Compute the following limits using I'H\^opital's rule if appropriate. Use INF to denote ∞ and MINF to denote $-\infty$.

to denote
$$\infty$$
 and MINF to denote $-\infty$.

$$\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(3x)} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(3x)}}{\lim_{x \to 1} \frac{4^x - 3^x - 1}{x^2 - 1}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 1} \frac{1 - \cos(7x)}{x^2 - 1}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{x^2 - 1}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(3x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(3x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{1 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}} = \frac{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1 - \cos(7x)}{3 - \cos(7x)}}{\lim_{x \to 0} \frac{1$$

4. Using L'Hôpital's Rule multiple times.

Activate

Evaluate the limit using L'Hopital's rule.

$$\lim_{x \to \infty} \frac{15x^3}{e^{2x}} = \frac{0}{1000} \text{ help (limits)} \frac{1}{1000} \frac{1}{1$$

5. Let f and g be differentiable functions about which the following information is known: f(3) = g(3) = 0, f'(3) = g'(3) = 0, f''(3) = -2, and g''(3) = 1. Let a new function h be given by the rule $h(x)=rac{f(x)}{g(x)}.$ On the same set of axes, sketch possible graphs of f and g near x=3, and use the provided information to determine the value of

$$\lim_{x\to 3} h(x) = \frac{f''(3)}{f''(3)} = -\frac{2}{7} = -\frac{2}{7}$$
 below, at bottom

Provide explanation to support your conclusion.

6. Find all vertical and horizontal asymptotes of the function

$$R(x) = \frac{3(x-a)(x-b)}{5(x-a)(x-c)}, = \frac{3(x-b)}{5(x-c)}$$

 $R(x) = \frac{3(x-a)(x-b)}{5(x-a)(x-c)}, \qquad 3(x-b) \qquad \text{where } a,b, \text{ and } c \text{ are distinct, arbitrary constants. In addition, state all values of } x \text{ for which } R \text{ is not continuous. Sketch a possible graph of } R, \text{ clearly labeling}$ the values of a, b, and c. See Below, botton

- **7.** Consider the function $g(x) = x^{2x}$, which is defined for all x > 0. Observe that $\lim_{x\to 0^+} g(x)$ is indeterminate due to its form of 0^0 . (Think about how we know that $0^k=0$ for all k>0, while $b^0=1$ for all $b\neq 0$, but that neither rule can apply to 0^0 .)
 - a. Let $h(x) = \ln(g(x))$. Explain why $h(x) = 2x \ln(x)$.
 - b. Next, explain why it is equivalent to write $h(x)=rac{2\ln(x)}{1}$.

- c. Use L'Hôpital's Rule and your work in (b) to compute $\lim_{x o 0^+} h(x)$.
- d. Based on the value of $\lim_{x\to 0^+}h(x)$, determine $\lim_{x\to 0^+}g(x)$.
- **8.** Recall we say that function g **dominates** function f provided that $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to \infty} g(x) = \infty$, and $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$.
 - a. Which function dominates the other: $\ln(x)$ or \sqrt{x} ?
 - b. Which function dominates the other: $\ln(x)$ or $\sqrt[n]{x}$? (n can be any positive integer) $\sqrt[n]{x}$ $\sqrt[n]{x}$ $\sqrt[n]{x}$
 - c. Explain why e^x will dominate any polynomial function.
 - d. Explain why x^n will dominate $\ln(x)$ for any positive integer n. Just take derivative,
 - e. Give any example of two nonlinear functions such that neither dominates $\frac{1}{x}$ y $\frac{1}{y}$ the other. $\frac{1}{2}x^2 + \frac{1}{4}x^2$

Feedback

R is not contohuous at x=e + x=e,

f'(3) = -2(3-3) =0

f''(3) = -2

