Chapter2 Worksheet

Power, Quotient, Exponential, and Sine/Cosine Worksheet

1. Let
$$f(x) = \sqrt{x}$$
.

1.1. Get the linear approximation to f(x) near x = 1. Call it L(x).

1.2. Make a table of values for your linear approximations, the exact values, and the absolute errors.

X	-0.2	0.1	0.4	0.7	1.0	1.3	1.6	1.9	2.2	2.5
L(x)										
f(x)										
f(x) - L(x)										

1.3. For which values of x does your linear approximation fall within 0.1 in absolute error of the exact value?

2. Let
$$h(x) = \frac{5x+5}{x^2+x+1}$$
.

2.1. Is h'(5) negative, 0, or positive? Write the equation of the tangent line at x = 5, **in point-slope form** (do not "simplify").

2.2. Determine all the values of x where the y = h(x) will have horizontal tangents by solving h'(x) = 0.

2.3. Graph y = h(x) below. Put points on the graph where x = 5 and where you found horizontal tangents. Does the graph match what you expected in the questions above?

- **3.** Consider the function $f(x) = 4\sin(x)$. Its graph is shown below.
 - **3.1.** Draw the tangent line at each of the give *x*-values and estimate its slope. (Get the intermediate values by symmetry!)

X	-6	-4	-2	0	1	3	
slope of tangent line							

3.2. Compute the derivative f'(x) and use it to make the table of values.

Χ	-6	- 5	-4	-3	-2	-1	0	1	2	3	4	5	6
f'(x)													

- **3.3.** Did the two tables match?
- **4.** Let $h(x) = \frac{\sin(x)}{1+x^2}$.
 - **4.1.** Determine the linear approximation L(x) to h(x) around x = 0.

- **4.2.** Use your linear approximation to estimate h(-0.2).
- **4.3.** Plot L(x) and h(x) in the vicinity of x = 0, and comment on how well it did at estimating h(-0.2).

Derivative of exponentials

Comparison

Power function: $f(x) = x^2$

Exponential function: $g(x) = 2^x$

Derivatives of exponential functions.

■ Let
$$f(x) = 2^x$$
. Then

$$f'(x) = \lim_{h \to 0} \frac{2^{x+h} - 2^x}{h}$$

$$= \lim_{h \to 0} 2^x \frac{\binom{2^h - 1}{h}}{h}$$

$$= 2^x \lim_{h \to 0} \frac{2^{h - 1}}{h}$$

h	0.1	0.01	0.001	0.0001	0.00001
$\frac{2^h-1}{h}$	0.717735	0.695555	0.693387	0.693171	0.69315

$$f'(x) = 0.693(3^x) = 0.693f(x)$$

■ Let
$$f(x) = 3^x$$
. Then
$$f'(x) = \lim_{h \to 0} \frac{3^{x+h} - 3^x}{h}$$

$$= \lim_{h \to 0} 3^x \frac{3^{h-1}}{h}$$

$$= 3^x \lim_{h \to 0} \frac{3^{h-1}}{h}$$

$$f'(x) = 1.0986 (3^x) = 1.0986 f(x)$$

5. Natural base:

We might guess that somewhere between 2 and 3, there is a base such that f'(x) = f(x). In fact, there is a number e with 2 < e < 3 such that if $f(x) = e^x$, then $f'(x) = 1 \cdot e^x = e^x$.

Euler's number is e = 2.71828... Complete a table like those above, and verify that f'(x) = f(x).

h	0.1	0.01	0.001	0.0001	0.00001
$\frac{e^{h}-1}{h}$					

Questions

■ 5.1. What is the slope of the tangent line to $y = e^x$ when x = -1? When x = 1?

■ 5.2. Find an equation for the tangent line to $y = x^3 - e^x + 2$ when x = 0.