Chapter 10
Polynomial and Series Representations of Functions





Chapter Summary

Formulas

Geometric sums (finite)

1 + r + r 2 + r 3 + ⋅⋅⋅ + r n = 1 - r n + 1 1 - r

      for any real number `r!=1` and any positive integer `n`

Geometric series

1 1 - x = 1 + x + x 2 + x 3 + ⋅⋅⋅ + x k + ⋅⋅⋅ = k = 0 x k ,    for   | x | < 1

Coefficients for Taylor polynomials and series

c k = f ( k ) ( 0 ) k ! for k = 0 , 1 , 2 , ...

Exponential series

e x = 1 + x + 1 2 x 2 + ⋅⋅⋅ + 1 k ! x k + ⋅⋅⋅ = k = 0 1 k ! x k

Sine series

sin x = x - 1 6 x 3 + 1 120 x 5 + ⋅⋅⋅ + ( - 1 ) k ( 2 k + 1 ) ! x 2 k + 1 + ⋅⋅⋅ = k = 0 ( - 1 ) k ( 2 k + 1 ) ! x 2 k + 1

Cosine series

cos x = 1 - 1 2 x 2 + 1 24 x 4 - ⋅⋅⋅ + ( - 1 ) k ( 2 k ) ! x 2 k + ⋅⋅⋅ = k = 0 ( - 1 ) k ( 2 k ) ! x 2 k

Error function series

erf x = 2 π [ x - 1 3 x 3 + 1 2 ! 5 x 5 - ⋅⋅⋅ + ( - 1 ) k k ! ( 2 k + 1 ) x 2 k + 1 + ⋅⋅⋅ ] = 2 π k = 0 ( - 1 ) k k ! ( 2 k + 1 ) x 2 k + 1

Natural logarithm series

ln ( 1 + x ) = x - 1 2 x 2 + 1 3 x 3 - ⋅⋅⋅ + ( - 1 ) k + 1 k x k + ⋅⋅⋅ = k = 0 ( - 1 ) k + 1 k x k ,       for   | x | < 1

Arctangent series

arctan x = x - 1 3 x 3 + 1 5 x 5 - ⋅⋅⋅ + ( - 1 ) k 2 k + 1 x 2 k + 1 + ⋅⋅⋅ = k = 0 ( - 1 ) k 2 k + 1 x 2 k + 1 ,       for   | x | 1

Binomial series

( 1 + x ) m = 1 + m x + m ( m - 1 ) 2 ! x 2 + m ( m - 1 ) ( m - 2 ) 3 ! x 3 + ⋅⋅⋅ + m ( m - 1 ) ⋅⋅⋅ ( m - k + 1 ) k ! x k + ⋅⋅⋅

           = k = 0 ( m k ) x k ,   for   | x | < 1

Harmonic series (divergent)

1 + 1 2 + 1 3 + ⋅⋅⋅ + 1 k + ⋅⋅⋅

Alternating harmonic series

1 - 1 2 + 1 3 - ⋅⋅⋅ + ( - 1 ) k k + ⋅⋅⋅ = ln 2

The Leibniz series

1 - 1 3 + 1 5 - ⋅⋅⋅ + ( - 1 ) k 2 k + 1 + ⋅⋅⋅ = π 4
Go to Back One Page

 Contents for Chapter 10