Chapter 3
Initial Value Problems





WeBWorK3.1 Differential Equations and Initial Values

Exercises

  1. Differentiate each of the following functions.
    1. `ftext[(]t text[)]=t^3`
    2. `ftext[(]t text[)]=e^(3t)`
    3. `ftext[(]t text[)]=3-e^t`
    4. `ftext[(]t text[)]=1-e^(3t)`
    5. `ftext[(]t text[)]=t-e^(3t)`
    1. `ftext[(]t text[)]=t^3-e^t`
    2. `ftext[(]t text[)]=t^3-3^t`
    3. `ftext[(]t text[)]=t^3-3t^2+1`
    4. `ftext[(]t text[)]=e^(3t)-3t^2+3t`
    5. `ftext[(]t text[)]=3+7t-2t^2+3t^3`
  2. Which of the following functions are solutions of the differential equation `dy text[/] dt=4y`?
    1. `ftext[(]t text[)]=e^(4t)`
    2. `ftext[(]t text[)]=e^(2t)`
    1. `ftext[(]t text[)]=2t^2`
    2. `ftext[(]t text[)]=5e^(4t)`
    1. `ftext[(]t text[)]=e^(4t)+5`
    2. `ftext[(]t text[)]=2t^2+3`
  3. Which of the following functions are solutions of the differential equation `dy text[/] dt=4t`?
    1. `ftext[(]t text[)]=2t^2`
    2. `ftext[(]t text[)]=2t^2+3`
    1. `ftext[(]t text[)]=3t^2`
    2. `ftext[(]t text[)]=5e^(4t)`
    1. `ftext[(]t text[)]=e^(4t)`
    2. `ftext[(]t text[)]=2+2t^2`
  4. Which of the following functions is the solution of the initial value problem `dy text[/] dt=4t` with `y=4` at `t=1`?
    1. `ftext[(]t text[)]=2t^2`
    2. `ftext[(]t text[)]=2t^2+1`
    1. `ftext[(]t text[)]=2t^2+4`
    2. `ftext[(]t text[)]=4e^(4t)`
    1. `ftext[(]t text[)]=3+2t^2`
    2. `ftext[(]t text[)]=2+2t^2`
  5. Which of the following functions is the solution of the initial value problem `dy text[/] dt=4t` with `y=4` at `t=0`?
    1. `ftext[(]t text[)]=2t^2`
    2. `ftext[(]t text[)]=2t^2+1`
    1. `ftext[(]t text[)]=2t^2+4`
    2. `ftext[(]t text[)]=4e^(4t)`
    1. `ftext[(]t text[)]=3+2t^2`
    2. `ftext[(]t text[)]=2+2t^2`
  6. Which of the following functions is the solution of the initial value problem `dy text[/] dt=4y` with `y=3` at `t=0`?
    1. `ftext[(]t text[)]=e^(4t)`
    2. `ftext[(]t text[)]=2e^(4t)`
    1. `ftext[(]t text[)]=3e^(4t)`
    2. `ftext[(]t text[)]=4e^(4t)`
    1. `ftext[(]t text[)]=3+2t^2`
    2. `ftext[(]t text[)]=3t^2`
  7. Which of the following functions is the solution of the initial value problem `dy text[/] dt=4y` with `y=4` at `t=0`?
    1. `ftext[(]t text[)]=e^(4t)`
    2. `ftext[(]t text[)]=2e^(4t)`
    1. `ftext[(]t text[)]=3e^(4t)`
    2. `ftext[(]t text[)]=4e^(4t)`
    1. `ftext[(]t text[)]=3+2t^2`
    2. `ftext[(]t text[)]=3t^2`
  8. Find three solutions of each of the following differential equations.
    1. `(dy)/(dt)=7y`
    2. `(dy)/(dt)=7t`
    1. `(dy)/(dt)=1.07y`
    2. `(dy)/(dt)=1.07t`
  9. Find the solution of each of the following initial value problems.
    1. `(dy)/(dt)=7y` with `y=2` at `t=0`
    2. `(dy)/(dt)=7t` with `y=2` at `t=0`
    3. `(dy)/(dt)=1.07y` with `y=2.3` at `t=0`
    4. `(dy)/(dt)=1.07t` with `y=2.3` at `t=0`
     
  10. Table E1 shows the number of disintegrations per minute counted by a Geiger counter that is testing a sample of radioactive barium-137. The disintegration rate of a radioactive substance is proportional to the amount of the substance not yet disintegrated.
    1. Find a formula for a function that approximately fits the data.
    2. Find the half-life of barium-137, that is, the time it takes for a given sample to decay to half the original amount.

    Table E1   Disintegrations per minute
    for radioactive barium-137
    Time (minutes)
    Counts per minute
    0
    10,034
    1
    8105
    2
    5832
    3
    4553
    4
    3339
    5
    2648
    6
    2035

    This problem is adapted from the Core-Plus Mathematics Project.
Go to Back One Page Go Forward One Page

 Contents for Chapter 3