Chapter 4
Differential Calculus and Its Uses





WeBWorK4.5 The Chain Rule

Exercises

  1. Use the Chain Rule and the rule for differentiating the square root function to calculate the derivative of each of the following functions.
    1. `sqrt(2t+3)`
    1. `sqrt(2t^2+3)`
    1. `sqrt(t^3-t)`
  2. Use the Chain Rule and the Product Rule (if needed) to calculate the derivative of each of the following functions.
    1. `e^(4t-6)`
    2. `e^(t^2)`
    3. `e^(t+4)`
    4. `t e^(4t-6)`
    1. `t e^(t^2)`
    2. `t e^(t+4)`
    3. `t^2e^(4t-6)`
    4. `t^2e^(t^2)`
    1. `t^2e^(t+4)`
    2. `sqrt(t ) e^(4t-6)`
    3. `sqrt(t ) e^(t^2)`
    4. `sqrt(t ) e^(t+4)`
  3. For each of the following functions, find `(dy)/(dx)`.
    1. `y=xe^(-x)`
    1. `y=e^(x^2+x)`
    1. `y=(2x^3+2x)^2`
  4. For each of the following functions, find `(dy)/(dx)`.
    1. `y=sqrt(x^5+x^2+1)`
    2. `y=u^2+u`, where `u=sqrt(x^2+1)`
    3. `y=v^2+v`, where `v=sqrt(u^2+1)` and `u=x^3-x`
  5. If `z=y^3+y+2` and `y=3x+1`, find `(dz)/(dx)`.
  6. Suppose `f` and `g` are function such that `f'text[(]2text[)]=4`, `g'text[(]2text[)]=-3`, `ftext[(]2text[)]=-1`, `gtext[(]2text[)]=1`, `f'text[(]1text[)]=2`, and `g'text[(]-1text[)]=5`. For each of the following functions, find the value of the derivative at `x=2`.
    1. `stext[(]xtext[)]=ftext[(]xtext[)]+gtext[(]xtext[)]`
    2. `ptext[(]xtext[)]=ftext[(]xtext[)]gtext[(]xtext[)]`
    1. `htext[(]xtext[)]=ftext[(]gtext[(]xtext[))]`
    2. `ktext[(]xtext[)]=gtext[(]ftext[(]xtext[))]`

    This exercise is adapted from Calculus Problems for a New Century, edited by Robert Fraga, MAA Notes No. 28, 1993.
Go to Back One Page Go Forward One Page

 Contents for Chapter 4