Chapter 4
Differential Calculus and Its Uses
4.5 The Chain Rule
Exercises
- Use the Chain Rule and the rule for differentiating the square root function to calculate the derivative of each of the following functions.
- `sqrt(2t+3)`
- `sqrt(2t^2+3)`
- `sqrt(t^3-t)`
- Use the Chain Rule and the Product Rule (if needed) to calculate the derivative of each of the following functions.
- `e^(4t-6)`
- `e^(t^2)`
- `e^(t+4)`
- `t e^(4t-6)`
- `t e^(t^2)`
- `t e^(t+4)`
- `t^2e^(4t-6)`
- `t^2e^(t^2)`
- `t^2e^(t+4)`
- `sqrt(t ) e^(4t-6)`
- `sqrt(t ) e^(t^2)`
- `sqrt(t ) e^(t+4)`
-
For each of the following functions, find `(dy)/(dx)`.
- `y=xe^(-x)`
- `y=e^(x^2+x)`
- `y=(2x^3+2x)^2`
- For each of the following functions, find `(dy)/(dx)`.
- `y=sqrt(x^5+x^2+1)`
- `y=u^2+u`, where `u=sqrt(x^2+1)`
- `y=v^2+v`, where `v=sqrt(u^2+1)` and `u=x^3-x`
- If `z=y^3+y+2` and `y=3x+1`, find `(dz)/(dx)`.
-
Suppose `f` and `g` are function such that `f'text[(]2text[)]=4`, `g'text[(]2text[)]=-3`, `ftext[(]2text[)]=-1`, `gtext[(]2text[)]=1`, `f'text[(]1text[)]=2`, and `g'text[(]-1text[)]=5`. For each of the following functions, find the value of the derivative at `x=2`.
- `stext[(]xtext[)]=ftext[(]xtext[)]+gtext[(]xtext[)]`
- `ptext[(]xtext[)]=ftext[(]xtext[)]gtext[(]xtext[)]`
- `htext[(]xtext[)]=ftext[(]gtext[(]xtext[))]`
- `ktext[(]xtext[)]=gtext[(]ftext[(]xtext[))]`
This exercise is adapted from Calculus Problems for a New Century, edited by Robert Fraga, MAA Notes No. 28, 1993.