Chapter 4
Differential Calculus and Its Uses
4.6
Derivatives of Functions Defined Implicitly
Exercises
- Calculate the derivative of each of the following functions.
- `lntext[(]x+2text[)]`
- `x^2+2 ln x`
- `x^2 lntext[(]x+2text[)]`
- `lntext[(]x^2+2text[)]`
- `x ln x`
- `x lntext[(]x^2+2text[)]`
-
For each of the following functions, find `(dy)/(dx)`.
- `y=lntext[(]x^2+1text[)]`
- `y=ln 5x`
- `y=1/(lntext[(]x+5text[)])`
- `y=2^xtext[(]x^2+1text[)]`
- `y=e^(ln 5x)`
- `y=1/(x^2+5)`
- `y=e^(x^2)`
- `y=1/(x+5)`
- `y=1/sqrt(x^2+5)`
- `y=sqrt(x^3+1)`
- `y=1/sqrt(x+5)`
- `y=1/ln(x^2+5)`
- Find the slope of the tangent line to the curve `x^3+y^3=28` at `text[(]1,3text[)]`.
- Find the slope of the tangent line to the curve `x^2-y^2=5` at `text[(]3,2text[)]`.
- Find (approximately) a number `x` that solves the equation `x=5 ln x`.