Chapter 4
Differential Calculus and Its Uses





WeBWorK4.6 Derivatives of Functions Defined Implicitly

Exercises

  1. Calculate the derivative of each of the following functions.
    1. `lntext[(]x+2text[)]`
    1. `x^2+2 ln x`
    1. `x^2 lntext[(]x+2text[)]`
    1. `lntext[(]x^2+2text[)]`
    1. `x ln x`
    1. `x lntext[(]x^2+2text[)]`
  2. For each of the following functions, find `(dy)/(dx)`.
    1. `y=lntext[(]x^2+1text[)]`
    1. `y=ln 5x`
    1. `y=1/(lntext[(]x+5text[)])`
    1. `y=2^xtext[(]x^2+1text[)]`
    1. `y=e^(ln 5x)`
    1. `y=1/(x^2+5)`
    1. `y=e^(x^2)`
    1. `y=1/(x+5)`
    1. `y=1/sqrt(x^2+5)`
    1. `y=sqrt(x^3+1)`
    1. `y=1/sqrt(x+5)`
    1. `y=1/ln(x^2+5)`
  3. Find the slope of the tangent line to the curve `x^3+y^3=28` at `text[(]1,3text[)]`.
  4. Find the slope of the tangent line to the curve `x^2-y^2=5` at `text[(]3,2text[)]`.
  5. Find (approximately) a number `x` that solves the equation `x=5 ln x`.
Go to Back One Page Go Forward One Page

 Contents for Chapter 4