Chapter 4
Differential Calculus and Its Uses
4.8 Differentials and Leibniz Notation
Exercises
- Calculate the differential `dy` of each of the following functions.
- `y=x^(5//2)`
- `y=x^(5//2)+x^2`
- `y=(x^2+3)^(5//2)`
- `y=x^(-5//2)`
- `y=sqrt(x^2+3)`
- `y=(ln x)^2`
- `y=x^(4//3) ln x`
- `y=x(p^2+x^2)^(-1//2)`
- `y=x^(-2//3) ln x`
- `y=(ln x+x)^(-1//3)`
- `y=(1-sqrt(x)) ln x`
- `y=(1+x^2)^(1//3)`
- Calculate the differential `dy` of each of the following functions.
- `y=ln(x+2)`
- `y=x^2+2 ln x`
- `y=x^2 ln(x+2)`
- `y=ln(x^2+2)`
- `y=x ln x`
- `y=x ln(x^2+2)`
-
For each of the following functions, find `dy`.
- `y=ln(x^2+1)`
- `y=ln(5x)`
- `y=1/ln(x+5)`
- `y=2^x(x^2+1)`
- `y=e^(ln(5x))`
- `y=1/(x^2+5)`
- `y=e^(x^2)`
- `y=1/(x+5)`
- `y=1/sqrt(x^2+5)`
- `y=sqrt(x^3+1)`
- `y=1/sqrt(x+5)`
- `y=1/ln(x^2+5)`