`d/(dx) tan y`   | 
      `=d/(dx) x` | 
`sec^2 y (dy)/(dx)`   | 
      `=1` | 
`(dy)/(dx)`  | 
      `=1/(sec^2 y)` | 
`(dy)/(dx)`  | 
      `=1/(1+tan^2 y)` | 
`(dy)/(dx)`  | 
      `=1/(1+x^2)` | 
 
  
`(dy)/(dx)`  | 
      `=1/((dx)/(dy))` | 
| `=1/(d/(dy) tan y)` | |
| `=1/(sec^2 y)` | |
| `=1/(1+tan^2 y)` | |
| `=1/(1+x^2)` | 
It's no surprise that these calculations are so similar, since the inverse function formula was derived by applying the Chain Rule to the defining formula for inverse functions.