Chapter 5
Modeling with Differential Equations
5.6 Derivative Calculations
Exercises
- Calculate each of the following derivatives.
- `d/(dt) e^(-t) sin 5t`
- `d/(dx) x^2 3^x`
- `d/(dx) e^(-2x) cos 5x`
- `d/(dt) cos^3 2t`
- `d/(dx) text[(] ln x^2text[)] cos 2x`
- `d/(dt) cos text[(] 2t^3text[)]`
- `d/(dt) 3^(2t)`
- `d/(dx) sin^(-1) x tan 2x`
- `d/(dx) e^(2x)/(sin 5x)`
- `d/(dx) sin^(-1) x tan^(-1) 2x`
- Calculate each of the following second derivatives.
- `d^2/(dt^2) e^(-t) sin 5t`
- `d^2/(dx^2) x^2 3^x`
- `d^2/(d theta^2) e^(-2theta) cos 5theta`
- `d^2/(dt^2) cos^3 2t`
- `d^2/(d theta^2) text[(] ln theta^2text[)] cos 2theta`
- `d^2/(dt^2) cos text[(] 2t^3text[)]`
- `d^2/(d theta^2) 3^(2theta)`
- `d^2/(dx^2) tan 2x`
- `d^2/(dx^2) e^(2x)/(sin 5x)`
- `d^2/(dx^2) tan^(-1) 2x`
- Find the derivative of each of the following functions.
- `z=7 ln text[(] 3+2t text[)]`
- `z=1/(2t+1)`
- `y=x^6+4x^2+6x^(-2)`
- `z=7/(3+2t)`
- `y=2 e^(5x)`
- `y=(sin 2u)/(cos 5u)`
- `y=text[(] sin 2t text[) (] cos 5t text[)]`
- `z=text[(] 2t+1text[)]^12`
- `y=text[(] sin^(-1) 2t text[) (] cos 5t text[)]`
- `u=tan^3 2x`
- For each of the following functions,
-
graph the function,
-
graph the derivative from your calculation in Exercise 3, and
-
explain how appropriate properties of the derivative graph confirm your symbolic calculation.
- `z=7 ln text[(] 3+2t text[)]`
- `z=1/(2t+1)`
- `y=x^6+4x^2+6x^(-2)`
- `z=7/(3+2t)`
- `y=2 e^(5x)`
- `y=(sin 2u)/(cos 5u)`
- `y=text[(] sin 2t text[) (] cos 5t text[)]`
- `z=text[(] 2t+1text[)]^12`
- `y=text[(] sin^(-1) 2t text[) (] cos 5t text[)]`
- `u=tan^3 2x`
-
- Find the derivative of each of the following functions.
- `y=3 sin t cos 3t`
- `z=1/(text[(]2t+1text[)]^2)`
- `u=cos^2 3t`
- `z=7/(text[(]3+2t text[)]^3)`
- `v=cos text[(]3t^2text[)]`
- `y=x^7+3x^2+6`
- `y=sin 2t-cos 5t`
- `z=2^(5x)`
- `y=tan 2t-cos 5t`
- `v=sin^(-1) 5y`
- For each of the following functions,
-
graph the function,
-
graph the derivative from your calculation in Exercise 5, and
-
explain how appropriate properties of the derivative graph confirm your symbolic calculation.
- `y=3 sin t cos 3t`
- `z=1/(text[(]2t+1text[)]^2)`
- `u=cos^2 3t`
- `z=7/(text[(]3+2t text[)]^3)`
- `v=cos text[(]3t^2text[)]`
- `y=x^7+3x^2+6`
- `y=sin 2t-cos 5t`
- `z=2^(5x)`
- `y=tan 2t-cos 5t`
- `v=sin^(-1) 5y`
-
- In each part of this exercise, graphs of two functions are shown. In each case, one of the functions is the derivative of the other. Decide which function is `f` and which is `f'`. Give as many reasons as you can for your choice.