Chapter 6
Antidifferentiation
6.1 Finding Antiderivatives
Exercises
- Find all antiderivatives of each of the following functions.
- `e^(-2t)`
- `5t^(-1)`
- `t^(-3)`
- `sin text[(]2 pi t text[)]`
- `1/t^(-2)`
- `1/(2t+1)`
- `cos 3t`
- `7/(3+2t)`
- Find all antiderivatives of each of the following functions.
- `e^(-t) + sin 5t`
- `e^(2x)-sin 3x`
- `e^(-2t) + cos 5t`
- `x^2 -3^x+x^(3/2)`
- `t^2 - cos 2t`
- `5/(2+3x)-cos x`
- `3^(2t)`
- `e^(2x)-1/(5x)+1/x^5`
- Solve each of the following initial value problems (see Exercise 1).
- `(dy)/(dt)=e^(-2t)`, `ytext[(]0text[)]=1`
- `(dy)/(dt)=5t^(-1)`, `ytext[(]1text[)]=1`
- `(dy)/(dt)=t^(-3)`, `ytext[(]1text[)]=0`
- `(dy)/(dt)=sin text[(]2 pi t text[)]`, `ytext[(]0text[)]=1`
- `(dy)/(dt)=1/t^(-2)`, `ytext[(]1text[)]=0`
- `(dy)/(dt)=1/(2t+1)`, `ytext[(]0text[)]=1`
- `(dy)/(dt)=cos 3t`, `ytext[(]0text[)]=1`
- `(dy)/(dt)=7/(3+2t)`, `ytext[(]0text[)]=1`
- Solve each of the following initial value problems (see Exercise 2).
- `(dy)/(dt)=e^(-t) + sin 5t`, `ytext[(]0text[)]=1`
- `(dy)/(dx)=e^(2x)-sin 3x`, `ytext[(]0text[)]=1`
- `(dy)/(dt)=e^(-2t) + cos 5t`, `ytext[(]0text[)]=1`
- `(dy)/(dx)=x^2 -3^x+x^(3/2)`, `ytext[(]0text[)]=1`
- `(dy)/(dt)=t^2 - cos 2t`, `ytext[(]0text[)]=1`
- `(dy)/(dx)=5/(2+3x)-cos x`, `ytext[(]0text[)]=1`
- `(dy)/(dt)=3^(2t)`, `ytext[(]0text[)]=1`
- `(dy)/(dx)=e^(2x)-1/(5x)+1/x^5`, `ytext[(]1text[)]=0`
-
- Show that `-ln text[(] cos theta text[)]` is an antiderivative of `tan theta` for `-pi/2<theta<pi/2`.
- Use your graphing tool to graph both of the functions in part (a), and explain how features of each graph match those of the other.
- Find all antiderivatives of each of the following functions.
- `1/(4+x^2)`
- `1/(2+x^2)-3/sqrt(2-x^2)`
- `1/(1+4x^2)`
- `x+1/x+1/x^2`
- `1/sqrt(4-x^2)`
- `x+1+1/(x+1)+1/(x^2+1)`
- `1/sqrt(1-4x^2)`
- `ln(e^x)`