Chapter 6
Antidifferentiation





6.2 Separation of Variables

Exercises

  1. Solve each of the following initial value problems.
    1. `(dP)/(dt)=2P, Ptext[(]0text[)]=-1`
    1. `(dP)/(dt)=2P^3, Ptext[(]0text[)]=0.5`
    1. `(dP)/(dt)=2P, Ptext[(]0text[)]=0`
    1. `(dP)/(dt)=2P^3, Ptext[(]0text[)]=1`
    1. `(dP)/(dt)=2P^2, Ptext[(]0text[)]=2`
    1. `(dP)/(dt)=2P^3, Ptext[(]0text[)]=-1`
    1. `(dP)/(dt)=2P^2, Ptext[(]0text[)]=-1`
    1. `(dP)/(dt)=2P^3, Ptext[(]0text[)]=0`
  2. Solve each of the following initial value problems.
    1. `(dy)/(dt)=1/t, ytext[(]1text[)]=0`
    1. `(dy)/(dt)=1/y, ytext[(]0text[)]=1`
    1. `(dy)/(dt)=1/t, ytext[(]1text[)]=1`
    1. `(dy)/(dt)=1/y, ytext[(]0text[)]=-1`
  3. For each of the following initial value problems, find the largest interval on which your solution from Exercise 2 is valid.
    1. `(dy)/(dt)=1/t, ytext[(]1text[)]=0`
    1. `(dy)/(dt)=1/y, ytext[(]0text[)]=1`
    1. `(dy)/(dt)=1/t, ytext[(]1text[)]=1`
    1. `(dy)/(dt)=1/y, ytext[(]0text[)]=-1`
  4. Solve each of the following initial value problems.
    1. `(dy)/(dt)=e^(-y), ytext[(]1text[)]=0`
    1. `(dy)/(dt)=e^(-t), ytext[(]0text[)]=1`
    1. `(dy)/(dt)=e^y, ytext[(]-1text[)]=0`
    1. `(dy)/(dt)=e^t, ytext[(]0text[)]=1`
  5. For each of the following initial value problems, find the largest interval on which your solution from Exercise 4 is valid.
    1. `(dy)/(dt)=e^(-y), ytext[(]1text[)]=0`
    1. `(dy)/(dt)=e^(-t), ytext[(]0text[)]=1`
    1. `(dy)/(dt)=e^y, ytext[(]-1text[)]=0`
    1. `(dy)/(dt)=e^t, ytext[(]0text[)]=1`
  6. Solve each of the following initial value problems.
    1. `(dy)/(dt)=e^(-y//2), ytext[(]1text[)]=0`
    1. `(dy)/(dt)=e^(-y//2), ytext[(]2text[)]=0`
    1. `(dy)/(dt)=e^(y//2), ytext[(]-1text[)]=0`
    1. `(dy)/(dt)=e^(y//2), ytext[(]-2text[)]=0`
  7. For each of the following initial value problems, find the largest interval on which your solution from Exercise 6 is valid.
    1. `(dy)/(dt)=e^(-y//2), ytext[(]1text[)]=0`
    1. `(dy)/(dt)=e^(-y//2), ytext[(]2text[)]=0`
    1. `(dy)/(dt)=e^(y//2), ytext[(]-1text[)]=0`
    1. `(dy)/(dt)=e^(y//2), ytext[(]-2text[)]=0`
  8. The initial value problem in Activity 4,

    `(dP)/(dt)=kP^2,   Ptext[(]0text[)]=P_0,`

    is another population model of some interest; we will return to it later. In what important ways does the solution of this problem differ from the solution, `Ptext[(]t text[)]=P_0 e^(kt)`, to the apparently similar initial value problem,

    `(dP)/(dt)=kP,   Ptext[(]0text[)]=P_0`?

  9. In Section 5.1, we modeled the acceleration of a falling body by the initial value problem

    `(dv)/(dt)=g-kv,   vtext[(]0text[)]=0.`

    By use of a scaling argument (i.e., changing the scale on the `v`-axis), we saw that the unique solution of this initial value problem is

    `v=g/k(1-e^(-kt))=g/k - g/k e^(-kt)`.

    1. Find this solution another way, by separating the variables in `(dv)/(dt)=g-kv`.
    2. Write the left-hand side of `v=g/k - g/k e^(-kt)` as `(ds)/(dt)`, and find position `s` (distance fallen) as an explicit function of `t`.
Go to Back One Page Go Forward One Page

 Contents for Chapter 6