Comment on Activity 4

  1. While the two curves have the same general shape, the numerical solution lies under the symbolic solution.

  2. As `n` is increased, the numerical solution moves closer to the symbolic one.

  3. Euler's Method uses the slope from the left end point for all of a particular subinterval. Since the slope increases at the beginning, the numerical solution stays below the symbolic one. After the inflection point, the slope decreases as `t` increases and the numerical solution "catches up" to the symbolic one.