Chapter 6
Antidifferentiation





Chapter Summary

Formulas

Antiderivatives

In the following list, one antiderivative is given for each function. To find all antiderivatives for that function, add an arbitrary constant `C`.

Function Antiderivative
`x^n`, `n` a nonnegative integer `1/(n+1)x^(n+1)`
`x^n`, `n` a negative integer `!=-1`
    and `x != 0`
`1/(n+1)x^(n+1)`
`x^r`, `r` is a real number and `x > 0` `1/(r+1)x^(r+1)`
`1/x`, `x > 0` `ln x`
`1/x`, `x < 0` `lntext[(]-xtext[)]`
`1/x`, `x != 0` `ln |x|`
`1/(1+x^2)` `tan^(-1) x`
`1/sqrt(1-x^2)`, `-1<x<1` `sin^(-1) x`
`sintext[(]r thetatext[)]` `-1/r costext[(]r thetatext[)]`
`costext[(]r thetatext[)]` `1/r sintext[(]r thetatext[)]`
`e^(r theta)` `-1/r e^(r theta)`
`1/(xtext[(]c-xtext[)])` `1/c  ln |x|/|c-x|`
`cftext[(]xtext[)]` `cFtext[(]xtext[)]`, where `Ftext[(]xtext[)]` is an antiderivative for `ftext[(]xtext[)]`
`ftext[(]xtext[)]+gtext[(]xtext[)]` `Ftext[(]xtext[)]+Gtext[(]xtext[)]`, where `Ftext[(]xtext[)]` is an antiderivative for `ftext[(]xtext[)]` and `Gtext[(]xtext[)]` is an antiderivative for `gtext[(]xtext[)]`

Other formulas

Go to Back One Page Go Forward One Page

 Contents for Chapter 6