Chapter 6
Antidifferentiation
Chapter Summary
Formulas
Antiderivatives
In the following list, one antiderivative is given for each function. To find all antiderivatives for that function, add an arbitrary constant `C`.
Function | Antiderivative |
`x^n`, `n` a nonnegative integer | `1/(n+1)x^(n+1)` |
`x^n`, `n` a negative integer `!=-1` and `x != 0` |
`1/(n+1)x^(n+1)` |
`x^r`, `r` is a real number and `x > 0` | `1/(r+1)x^(r+1)` |
`1/x`, `x > 0` | `ln x` |
`1/x`, `x < 0` | `lntext[(]-xtext[)]` |
`1/x`, `x != 0` | `ln |x|` |
`1/(1+x^2)` | `tan^(-1) x` |
`1/sqrt(1-x^2)`, `-1<x<1` | `sin^(-1) x` |
`sintext[(]r thetatext[)]` | `-1/r costext[(]r thetatext[)]` |
`costext[(]r thetatext[)]` | `1/r sintext[(]r thetatext[)]` |
`e^(r theta)` | `-1/r e^(r theta)` |
`1/(xtext[(]c-xtext[)])` | `1/c ln |x|/|c-x|` |
`cftext[(]xtext[)]` | `cFtext[(]xtext[)]`, where `Ftext[(]xtext[)]` is an antiderivative for `ftext[(]xtext[)]` |
`ftext[(]xtext[)]+gtext[(]xtext[)]` | `Ftext[(]xtext[)]+Gtext[(]xtext[)]`, where `Ftext[(]xtext[)]` is an antiderivative for `ftext[(]xtext[)]` and `Gtext[(]xtext[)]` is an antiderivative for `gtext[(]xtext[)]` |
Other formulas
`1/(xtext[(]c-xtext[)])=1/c[1/x+1/(c-x)]`
-
The solution of the logistic growth initial value problem
`(dP)/(dt)=kPtext[(]M-Ptext[)]` with `Ptext[(]0text[)]=P_0`
is
`P=(P_0 M)/(text[(]M-P_0text[)]e^(-Mkt)+P_0)`.