Comment on Activity 3

The function `f` is the derivative of the function `F`, so `f(t) = 0.032 e^(-0.032t)`, and the integral is

`0.032 int_0^200 t e^(-0.032t) dt`.

We may evaluate this by integration by parts. Let `u=t` and `dv = e^(-0.032t)dt`. Then

`0.032 int_0^200 te^(-0.032t) dt` `=0.032 [t((-1)/0.032 e^(-0.032t))|_0^200+ int_0^200 1/0.032 e^(-0.032t) dt]`
  `= int_0^200 e^(-0.032t) dt - 200 e^(-6.4)`
  `= (-1)/0.032 e^(-0.032t) |_0^200 - 200 e^(-6.4) ~~ 30.87` days.