Chapter 9
Probability and Integration
Chapter 9
Probability and Integration Chapter Summary
Formulas
Statistics for a set of data values `{v_1, v_2, ..., v_n}`
Mean: `m=1/n sum_(k=1)^n v_k` Variance: `var=1/n sum_(k=1)^n (v_k-m)^2` Standard
deviation:`sd=sqrt(var)=sqrt(1/n sum_(k=1)^n (v_k-m)^2)`
Continuous Probability
- Exponential Distributions (`0<=t<oo`, `r>0`)
Distribution function: `F text[(] t text[)]=1-e^(-rt)` Density function: `f text[(] t text[)] =r e^(-rt)` Mean: `m=1/r` - Cauchy Distribution (`-oo<t<oo`)
Distribution function: `F text[(] t text[)] =1/2+1/pi tan^(-1) t` Density function: `f text[(] t text[)] =1/(pi(1+t^2))` Mean: `m=0` - Uniform Distributions (`a<=t<=b`)
Distribution function: `F text[(] t text[)] =(t-a)/(b-a)` Density function: `f text[(] t text[)] =1/(b-a)` Mean: `m=(a+b)/2` - Standard Normal Distribution (`-oo<t<oo`, `c~~0.3989`)
Distribution function: `F text[(] t text[)] =1/2+int_0^t c e^(-s^2text[/]2) ds` Density function: `f text[(] t text[)] =c e^(-t^2text[/]2)` Mean: `m=0`
erf` text[(] t text[)] =int_0^t (2 e^(-s^2))/sqrt(pi) ds`
`int_a^oo g text[(] t text[)] dt=lim_(T rarr oo) int_a^T g text[(] t text[)] dt`
`int_(-oo)^a g text[(] t text[)] dt=lim_(T rarr -oo) int_T^a g text[(] t text[)] dt`
`int_(-oo)^oo g text[(] t text[)] dt=int_(-oo)^0 g text[(] t text[)] dt+int_0^oo g text[(] t text[)] dt`