Chapter 9
Probability and Integration





Chapter Summary

Formulas

Statistics for a set of data values `{v_1, v_2, ..., v_n}`

Mean: `m=1/n sum_(k=1)^n v_k`
Variance: `var=1/n sum_(k=1)^n (v_k-m)^2`
Standard 
deviation
:
`sd=sqrt(var)=sqrt(1/n sum_(k=1)^n (v_k-m)^2)`

Continuous Probability

Error Function

erf` text[(] t text[)] =int_0^t (2 e^(-s^2))/sqrt(pi) ds`

Improper Integrals

`int_a^oo g text[(] t text[)]  dt=lim_(T rarr oo) int_a^T g text[(] t text[)]  dt`

`int_(-oo)^a g text[(] t text[)]  dt=lim_(T rarr -oo) int_T^a g text[(] t text[)]  dt`

`int_(-oo)^oo g text[(] t text[)]  dt=int_(-oo)^0 g text[(] t text[)]  dt+int_0^oo g text[(] t text[)]  dt`

Go to Back One Page Go Forward One Page

 Contents for Chapter 9