domain of g', $g'(x) = \frac{1}{f'(g(x))}$.

Chain rule i
$$ln(stuff)$$
.
 $\frac{d}{dx} ln(x) = \frac{1}{x}$.
 $\frac{d}{dx} ln(x) = \frac{1}{x}$.

2.6.6 Exercises

1. Composite function involving logarithms and polynomials. Activate

 \bigcirc Find the derivative of the function f(t), below.

 $\oslash f(t) = \ln(t^3 + 3)$ $\int f'(t) = \min(t + 3) \qquad \qquad 1 \qquad \qquad \qquad 1 \qquad$

2. Composite function involving trigonometric functions and 5(4) = (05(52-68). dx (05(x)=-5in(x). logarithms.

Activate Find the derivative of the function g(t), below. It may be to your advantage to simplify before differentiating. = la(f)

$$g(t) = \cos(\ln(t))$$

 $g'(t) = \frac{-\sin(str(t))}{t} \cdot str(t) \cdot \frac{1}{t} = \frac{-\sin(\ln(t))}{t}$

3. Product involving $\arcsin(w)$.

Activate

Just a pode A rule :

Find the derivative of the function h(w), below. It may be to your advantage to simplify before differentiating.

$$h(w) = 7w \arcsin w$$

$$h'(w) = \frac{(7\omega)' \cdot \cos(\sin(\omega) + 7\omega (\arcsin(\omega)) = 7 \arcsin(\omega)}{(1-\omega^2)} + \frac{7\omega}{(1-\omega^2)}$$

4. Derivative involving $\arctan(x)$ **.**

Sin rule

$$(\operatorname{arch}_{(ch.ff)}) = \frac{1}{1+\operatorname{shift}^2} \cdot \operatorname{shift}^2$$

Activate

For x > 0, find **and simplify** the derivative of $f(x) = \arctan x + \arctan(1/x)$.

$$f'(x) = \underbrace{f'(x)}_{1 \neq x^2} + \underbrace{f'(x)}_{1 \neq x^2} \cdot \underbrace{f'(x)}_{1 \neq x^2} = \underbrace{f'(x)}_{1 \neq x^2} = 0$$

(What does your result tell you about f)? It's derivative is O encyclice (except areo, where it's not defined). Constant (but graphf-5. Composite function from a graph. Activate

 \int Let $(x_0, y_0) = (2, 6)$ and $(x_1, y_1) = (2.1, 6.2)$. Use the following graph of the function f to find the indicated derivatives.

6. Composite function involving an inverse trigonometric function.

Activate
Let

$$f(x) = 7 \sin^{-1}(x^{3})$$

$$f'(x) = \sqrt{f(-(x^{5})^{2} + (3x^{5}))} = \frac{2!x^{2}}{\sqrt{1-x^{6}}}$$
NOTE: The webwork system will accept arcsin(x) or sin⁻¹(x) as the inverse
of sin(x).

$$f'(x) = \sqrt{f(-x^{5})^{2} + (3x^{5}))} = \frac{2!x^{2}}{\sqrt{1-x^{6}}}$$
NOTE: The webwork system will accept arcsin(x) or sin⁻¹(x) as the inverse
of sin(x).

$$f'(x) = \sqrt{f(-x^{5})^{2} + (3x^{5}))} = \frac{2!x^{2}}{\sqrt{1-x^{6}}}$$
NOTE: The webwork system will accept arcsin(x) or sin⁻¹(x) as the inverse
of sin(x).

$$f'(x) = \sqrt{f(-x^{5})^{2} + (3x^{5}))} = \frac{2!x^{2}}{\sqrt{1-x^{6}}}$$
NOTE: The webwork system will accept arcsin(x) or sin⁻¹(x) as the inverse
of sin(x).

$$f'(x) = \sqrt{f(-x^{5})^{2} + (3x^{5})^{2} + (1-x^{5})^{2}}$$

$$f'(x) = \sqrt{f(-x^{5})^{2} + (1-x^{5})^{2}}$$

Co Product of tripte compositive Si = it (h(aresin(2))2 - orresin(2) · VI-X2 $Q'(t) = 2\left[\arctan(3t)\right] - \left(\arctan(3t)\right)' \cdot \left(\arctan(3t)\right)' + \left(\arctan(3t)\right)^{2} \cdot 4\left(\arctan(3t)\right)^{2} \cdot (\arctan(3t)\right)'$

$$11.$$
 Let $f(x) = \frac{1}{4}x^3 + 4.$

- a. Sketch a graph of y = f(x) and explain why f is an invertible function.
- b. Let g be the inverse of f and determine a formula for g.
- c. Compute f'(x), g'(x), f'(2), and g'(6). What is the special relationship between f'(2) and g'(6)? Why?

> 12. Let $h(x) = x + \sin(x)$.

- a. Sketch a graph of y = h(x) and explain why h must be invertible.
- b. Explain why it does not appear to be algebraically possible to determine a formula for h^{-1} .
- c. Observe that the point $(\frac{\pi}{2}, \frac{\pi}{2} + 1)$ lies on the graph of y = h(x). Determine the value of $(h^{-1})'(\frac{\pi}{2} + 1)$.

Feedback

