Section 1.6 – Second Order Derivatives

	f	f	<i>f</i> "
Values (intervals) where negative	NA	(Z,6)	(2,4) (8,10)
Values where equal to zero	MA	ÉZ, 6, 107	{ 1,8}
Values (intervals) where positive	(2,10)	(6,10)	(4,7)

1. Given the following graph of y = f(x), fill in the following table.

2. If f is represented by the following table, fill in the missing rows on the table with the best approximation: for word f and f

approximation.	onward			
X	0	2	4	6
<i>f</i> (<i>x</i>)	4	6	7	6
f'(x)	۱	3/4	Ð	-1/2
f''(x)	-313	- 'Xf	-5/16	-), y

3. Given the following graph of y = f(x), fill in the following table and draw graphs of f' and f''.

	6	<i>u</i>				
	J	J.	J.			
Values (intervals)	(4)	(2)				
where negative	L/10)	(1) (1) (1)				
Values where equal	50112127	521.5	5.113.27			
to zero	50,9,8,123	20,6,109	$\{0, 9, 0, 12\}$			
Values (intervals)	$\left \right \left \right \left \left $					
where positive	$(o, 4) \cup (o, 19)$	$(0, z) \vee ((0, 10))$	(9,8)			

$$f'(x) = \lim_{h \to 0} \frac{f(x+k)}{h} \frac{f(k)}{2} = \lim_{h \to 0} \frac{3(x+k)^2}{h} - 3x^2 = \lim_{h \to 0} \frac{3(x+k+k^2)}{h} - 3x^2$$

$$= \lim_{h \to 0} \frac{6xh + 3h^2}{h} = \lim_{h \to 0} \frac{h(0x+3h)}{h} = \lim_{h \to 0} \frac{(6x+3h)}{h} = \frac{1}{6xh}$$
A. Given that $y = f(x) = x^3$, use the algebraic definition to find a formula for $y = f(x)$ and $y = \frac{1}{2}$

$$f'(x). Show all of your workt $\frac{1}{f'(n)} = \lim_{h \to 0} \frac{f(x+k)}{h^2} - \frac{1}{2} = \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h} = \frac{1}{h \to 0} + \frac{1}{2} + \frac{1}{2}$$$

Might Smooth out those graphs a little