Chapter 11 – Hypothesis Testing

There are 2 hypotheses:

- (1) Null Hypothesis, H_0 , is the assumed true (status quo, it has always been this way) hypothesis. The form is always H_0 : $\mu = \mu_0$. Court Analogy: The defendant is assumed innocent.
- (2) Alternative Hypothesis, H₁, is what is being tested (the opposed view being examined)

1 of 3 forms: (1) $H_1: \mu > \mu_0$, (greater than) (2) $H_1: \mu < \mu_0$, (less than) or (3) $H_1: \mu \neq \mu_0$ (any difference). Court Analogy: The defendant is guilty.

As a prosecutor, we would try to prove the alternative beyond a reasonable doubt (usually we will set this at 5%). We can make errors in this process:

Decision	H ₀ is true	H ₀ is false
Reject H ₀	Type I Error	Correct
Fail to Reject H ₀	Correct	Type II Error

A Type I Error is made when we reject a true null hypothesis. (Court: Send an innocent person to jail)

 $\alpha = P(Type \ I \ Error) = P(Reject \ a \ true \ H_o)$

A Type II Error is made when we fail to reject a false null hypothesis.

(Court: Fail to convict a guilty person)

 $\beta = P(Type II Error) = P(Fail to Reject a false H_o)$

When we have a fixed sample size, then α and β are inversely related. As one increases, the other decreases. We will begin by limiting how willing we are to falsely reject H_o. ($\alpha = 0.05$)

Steps for a Hypothesis Test:

- 1. State the null (H_0) and alternative (H_1) hypotheses. It is better to state H_1 first.
- 2. Define the form of the test statistic (for now, $Z = \frac{\overline{x} \mu}{\sigma / \sqrt{n}}$)
- 3. Take the sample and compute the observed value of the test statistic (Z for now).
- 4. Compute the p-value.
- 5. Make a decision (two choices):

If $p \le \alpha$, then reject the null hypothesis.

If $p > \alpha$, then fail to reject the null hypothesis.

6. Interpret the results using Figure 11.6 on p.329. This is in

terms of H₁ (in English, not in symbols).