The Integral Test

MAT 229, Spring 2025

Supporting materials

Review

Question

What are the first four partial sums for $\sum_{k=1}^{\infty} \frac{1}{k^2}$?

Questions

Which of the following converge? To what?

- $\sum_{k=0}^{\infty} 4\left(\frac{3}{2}\right)^k$
- $\sum_{k=0}^{\infty} 5\left(-\frac{2}{3}\right)^{k}$ = $\frac{7}{4^{3}} + \frac{7}{4^{4}} + \frac{7}{4^{5}} + \frac{7}{4^{6}} + \dots = \frac{7}{4^{3}}\left(1 + \frac{1}{4^{1}} + \frac{1}{4^{2}} + \frac{1}{4^{3}} + \dots\right)$

Question

How do I know that $\sum_{k=1}^{\infty} \sin(k)$ diverges?

Series Tails

Finite sums have finite values.

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_{n-1} + a_n$$

Infinite sums can be written as the sum of its first few terms and all the other terms

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + \dots + a_{n-1} + a_n + a_{n+1} + a_{n+2} + a_{n+3} + \dots$$
$$= \sum_{k=1}^{n} a_k + \sum_{k=n+1}^{\infty} a_k$$

We say $\sum_{k=n+1}^{\infty} a_k$ is a *tail* of the series.

Series convergence

Because the first few terms have a finite sum, the whole series converges if and only if each tail converges.

Integral Test

Questions

Consider the series $\sum_{k=1}^{\infty} \frac{1}{k^2}$. The summands (terms) of this series are 1, $\frac{1}{4}$, $\frac{1}{9}$,

- You have computed the first few partial sums for this series. How do the partial sums compare, S₁ with S₂, S₂ with S₃, etc.?
- Is this monotonic or not?

Questions

Suppose the summands a_1, a_2, a_3, \dots are all positive.

- Are the partial sums $S_n = \sum_{k=1}^n a_k$ monotonic?
- If we can find an upper bound for the sequence $S_1, S_2, S_3, ...$ what do we know about the convergence of $\sum_{k=1}^{\infty} a_k$?

Questions

Questions

Let $a_k = \frac{1}{k}$. The plot of these terms is

- Approximate $\int_{1}^{5} \frac{1}{x} dx$ using n = 4 and the *left* hand endpoints.
- Is that an underestimate, overestimate, or can't tell?
- How is that approximation related to $\sum_{k=1}^{4} \frac{1}{k}$?
- What is $\int_{1}^{\infty} \frac{1}{x} dx$? What can you conclude about $\sum_{k=1}^{\infty} \frac{1}{k}$?

Integral test

Given the infinite series $\sum_{k=n}^{\infty} a_k$, if there is an integrable function f(x) such that

- $f(k) = a_k$ for $k \ge n$,
- $f(x) \ge 0$ for $x \ge n$,
- f(x) is a decreasing function for $x \ge n$.

then the infinite series $\sum_{k=n}^{\infty} a_k$ converges if and only if the improper integral $\int_n^{\infty} f(x) dx$ converges.

Question

Use the integral test to determine if $\sum_{k=1}^{\infty} e^{-k}$ converges or not.

Question

For which values of p does the infinite series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converge and for which values of p does it diverge?

Error estimate

Once you know a series converges, you can approximate it with a partial sum.

```
\begin{split} & \sum_{k=1}^{\infty} a_k \approx \sum_{k=1}^n a_k \\ \text{The absolute error in this approximation is} \\ & \text{error} \\ & = | \operatorname{exact} - \operatorname{approximation} | \\ & = | \sum_{k=1}^{\infty} a_k - \sum_{k=1}^n a_k | \\ & = | (a_1 + a_2 + a_3 + \ldots + a_n + a_{n+1} + a_{n+2} + \ldots) - (a_1 + a_2 + a_3 + \ldots + a_n) | \\ & = | a_{n+1} + a_{n+2} + \ldots | \\ & = \left| \sum_{k=n+1}^{\infty} a_k \right| \end{split}
```

The error is just a tail of the series.

Integral test error estimate

If we know a series $\sum_{k=1}^{\infty} a_k$ converges due to the integral test with function f(x), then the error in approximating $\sum_{k=1}^{\infty} a_k$ with the partial sum $\sum_{k=1}^{n} a_k$ is

Questions

Consider the series $\sum_{k=1}^{\infty} \frac{1}{k^3}$. We know this converges by the integral test.

- What is the error in approximating $\sum_{k=1}^{\infty} \frac{1}{k^3}$ with $\sum_{k=1}^{5} \frac{1}{k^3}$?
- How should I choose *n* to approximate $\sum_{k=1}^{\infty} \frac{1}{k^3}$ with $\sum_{k=1}^{n} \frac{1}{k^3}$ so that the error is no more than 0.0001

Questions

- Does the series $\sum_{k=0}^{\infty} \frac{1}{k^2+1}$ converge or diverge? If it converges, approximate it with a partial sum with error less than 0.001.
- Does the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ converge or diverge? If it converges, approximate it with a partial sum with error less than 0.001.