
MAT 229: An Infinite Series Toolbox
(rev. March 2019 – Thanks to Roger Zarnowski!)

Following is a summary of results for infinite series, from chapter 11 of the text. Material from
section 11.1 on sequences is also very important, although not included here.

General Tools

• Analogy with Improper Integrals

Improper Integrals (Type I)

If f is continuous with antiderivative F ,

∫
∞

1

f(x) dx = lim
t→∞

∫ t

1

f(x) dx

= lim
t→∞

(
F (x)|t1

)
,

provided the limit exists.

Infinite Series

Define SN =
∑N

k=1
ak = a1 + a2 + · · · + aN .

Then

∞∑

k=1

ak = lim
k→∞

N∑

k=1

ak

= lim
N→∞

SN (a limit of a sequence)

provided the limit exists.

• Definition:
∞∑

k=1

ak = lim
N→∞

N∑

k=1

ak

provided this limit exists as some real number S. In that case the infinite series is said to be
convergent, with value S. If the limit on the right does not exist, the infinite series is divergent.

The expression
N∑

k=1

ak is denoted SN and is called the N th partial sum. Convergence of the

infinite series

∞∑

k=1

ak is therefore defined as convergence of the sequence of partial sums {SN}.

NOTE: Unfortunately, SN usually can’t be evaluated in closed form, and so the above limit
often cannot be determined analytically. See the next section for two special cases in which
this can be done.

• The Divergence Test (sometimes called the nth-term test)

If lim
k→∞

ak 6= 0 then

∞∑

k=1

ak is divergent. (You should know how to prove this, although the

proof uses the equivalent contrapositive statement, which says that if

∞∑

k=1

ak is convergent,

then lim
k→∞

ak = 0.)

NOTE: If lim
k→∞

ak = 0 then the series

∞∑

k=1

ak may either be convergent (as with a convergent

p-series) or divergent (as with the harmonic series). Be sure you understand the logic of these
statements.
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Series for which SN can be computed in closed form

• Geometric series:
∞∑

k=0

ark = a + ar + ar2 + · · · ,

where a 6= 0. Then

SN =

N∑

k=0

ark = a + ar + ar2 + · · · + arN

=

{

Na, if r = 1

a1−rN+1

1−r
, if r 6= 1.

If |r| ≥ 1 the series diverges since lim
N→∞

SN does not exist.

If |r| < 1 then lim
N→∞

SN = a
1 − 0

1 − r
=

a

1 − r
and the series therefore converges to

a

1 − r
.

NOTE: Geometric series may appear in forms other than the general one shown above, but
they can always be converted to that form. In any case, if |r| < 1 the series converges to
first term

1−r
. (See examples from class or in the text.)

• Telescoping series:
∞∑

k=1

(ck − ck+1) = (c1 − c2) + (c2 − c3) + · · ·

In this case,

SN =

N∑

k=1

(ck − ck+1)

= (c1 −��c2) + (��c2 −ZZc3) + · · · + (XXXcN−1 −��cN ) + (��cN − cN+1)

= c1 − cN+1

NOTE: Telescoping series may not initially appear in the form shown, but must usually be
rewritten into that form, for example, by using partial fraction decompositions, properties of
logarithms, etc. (See examples from class or in the text.)

Tools for Series of Positive Terms

• The Integral Test

If f(x) is continuous, positive-valued, and decreasing on [1,∞), and if ak = f(k) for k =

1, 2, 3, . . ., then the infinite series
∞∑

k=1

ak and the improper integral

∫
∞

1

f(x) dx either both

converge or both diverge.

• p-series

By applying the Integral Test to the function f(x) =
1

xp
, we find that the p-series

∞∑

k=1

1

kp
is

convergent if p > 1 and is divergent if p ≤ 1.
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• Error Bounds for Approximating Series of Positive Terms by Partial Sums

Suppose f and ak are as described in the hypotheses of the integral test and suppose we know

that
∞∑

k=1

ak is convergent (either by the integral test or some other test). Let S denote the

exact (unknown) value of the sum of the series, and suppose we approximate S by the partial
sum SN . The error in this approximation is RN where S = SN + RN , or RN = S − SN , as
shown below:

S =

∞∑

k=1

ak

= a1 + a2 + · · · + aN
︸ ︷︷ ︸

+ aN+1 + · · ·
︸ ︷︷ ︸

= SN (approximation) + RN (error).

Then ∫
∞

N+1

f(x) dx ≤ RN ≤

∫
∞

N

f(x) dx.

This gives bounds on the size of the error RN . Since RN = S − SN , this can be rewritten to
give bounds on the exact value of the series, as follows (the “100% confidence box”):

SN +

∫
∞

N+1

f(x) dx ≤ S ≤ SN +

∫
∞

N

f(x) dx.

• The Direct Comparison Test

1. If 0 < ak ≤ bk for all k and
∞∑

k=1

bk is convergent, then so is
∞∑

k=1

ak.

(If the “larger” series is convergent, then so is the “smaller” one.)

In this case, the test would be applied by finding a known convergent series with terms
bk in order to prove convergence of the series that has terms ak.

2. If 0 < ak ≤ bk for all k and

∞∑

k=1

ak is divergent, then so is

∞∑

k=1

bk.

(If the “smaller” series is divergent, then so is the “larger” one.)

In this case, the test would be applied by finding a known divergent series with terms ak

in order to prove divergence of the series that has terms bk.

• The Limit Comparison Test

If
∞∑

k=1

ak and
∞∑

k=1

bk are series of positive terms and if lim
k→∞

ak

bk

is a positive real number

(not 0 and not ∞) then either both series converge or both series diverge.

We may sometimes be able to draw a conclusion even if the the limit is 0 or ∞ :

◦ If lim
k→∞

ak

bk

= 0 and
∞∑

k=1

bk is convergent, then so is
∞∑

k=1

ak.
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◦ If lim
k→∞

ak

bk

= ∞ and

∞∑

k=1

bk is divergent, then so is

∞∑

k=1

ak.

Tools for Alternating Series

• The Alternating Series Test (AST)

Consider

∞∑

k=1

(−1)k+1bk = b1 − b2 + b3 − b4 + . . ., where bk > 0 for all n. If the following two

conditions hold:

(i) lim
k→∞

bk = 0

(ii) bk+1 ≤ bk for all k greater than some integer M, (i.e., the terms are eventually decreasing
– remember, it’s all about the tails)

then the alternating series

∞∑

k=1

(−1)k+1bk is convergent. (The same holds for

∞∑

k=1

(−1)nbk.)

NOTE:

1. Verification of the inequality in (ii) is usually accomplished in one of two ways: either by
algebraic simplification (cross-multiplying, etc.), or by identifying a function f for which
bk = f(k) and showing that f ′(x) < 0.

2. If the alternating series can be shown convergent by the AST, it still leaves open the
question of whether the series is absolutely convergent (AC) or conditionally conver-
gent (CC). “Absolute convergence” means that the series of absolute values converges –
this is the strongest type of convergence, such as with alternating p-series with p > 1.
“Conditional convergence” means that the alternating series converges only because of
the cancellations between positive and negative terms, such as with the alternating har-
monic series.

• Error Bounds for Approximating Alternating Series by Partial Sums

Consider the alternating series
∞∑

k=1

(−1)k+1bk. Suppose that lim
k→∞

bk = 0 and bk+1 ≤ bk for all

k. Then, by the AST, the series is convergent. Let S denote the exact (unknown) value of
the sum of the series, and suppose we approximate S by the partial sum SN . The error in
this approximation is RN where S = SN + RN , or RN = S − SN , as shown below:

S =

∞∑

k=1

(−1)k+1bk

= b1 − b2 + · · · + (−1)N+1bN
︸ ︷︷ ︸

+ (−1)N bN+1 + · · ·
︸ ︷︷ ︸

= SN (approximation) + RN (error).

Then
|RN | ≤ |bN+1|,

that is, the error is bounded by the size of the first neglected term.
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Absolute Convergence Test

If

∞∑

k=1

|ak| converges, then so does

∞∑

k=1

ak.

(and we say that the series is absolutely convergent). If a series is absolutely convergent, then
the terms of the series may be re-arranged in any order, and they will always give the same sum.

The Ratio and Root Tests

These tests apply to any infinite series:

• The Ratio Test

(i) If lim
k→∞

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
< 1 then the series

∞∑

k=1

ak is absolutely convergent (AC).

(ii)) If lim
k→∞

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
> 1 or if this limit is ∞, then the series

∞∑

k=1

ak is divergent.

(iii) If lim
k→∞

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
= 1 then this test is inconclusive.

• The Root Test

(i) If lim
k→∞

k
√

|ak| < 1 then the series

∞∑

k=1

ak is absolutely convergent (AC).

(ii)) If lim
k→∞

k
√

|ak| > 1 or if this limit is ∞, then the series

∞∑

k=1

ak is divergent.

(iii) If lim
k→∞

k
√

|ak| = 1 then this test is inconclusive.


