Review for Exam 1

MAT 229, Spring 2025

Format

- Questions will be similar to homework questions and quiz questions.
- On the pen and paper part you must show your work. For example, if you need to evaluate a definite integral, you must derive the antiderivative and express how you evaluate it.
- When you believe that you've done something incorrect, cross out rather than erase. That way I can give you partial credit if you were actually doing useful work (but perhaps got off the path).
- You may have a one-page (front and back) sheet for formulas, etc. on Thursday (recall that we have a techno-free test on Thursday, and then Mathematica test on Friday). You may use copies of your labs for Friday.

Topics:

- From Calculus 1:
 - Domains and ranges of functions
 - Transformations of a function
 - Tangent lines
 - Absolute max/min
 - Intervals of increase/decrease and local max/min
 - Intervals of concavity and inflection points
 - Limits, and the limit definition of the derivative
 - derivative rules, such as product rule, chain rule
 - Fundamental Theorem of Calculus
 - Substitution for integrals
 - Calculations of Area
 - Volumes of solids of revolution
- Classes of functions
 - Polynomials
 - Rational functions (ratios of polynomials)
 - Root functions and power functions (e.g. x^p, with real number p)

- Trig functions
- Exponential and log functions
- even and odd functions
- Inverse functions
 - One-to-one functions (passing the horizontal line test)
 - Properties of functions and their inverses (e.g. exchange of domains and ranges; mirror reflections, about y=x; intersections occur along the mirror line; slopes of tangent lines reflect in the mirror)
 - Compute the inverse to a given function, with domain restriction if necessary. Draw the inverse, given the graph of f.
 - = Compute the derivative of the inverse of a function f using the general formula: $\frac{d f^{-1}[y]}{dy} = \frac{1}{f'[f^{-1}[y]]}$
- Indeterminate limits
 - L'Hopital's rule, which applies to an indeterminate quotient. No flat tire, no L'Hopital!
 - The different indeterminate forms, and transforming them to a quotient.
 - Asymptotics -- all rational functions look like polynomials in the limit, which one can discover by long division.
- Exponential functions
 - Exponential properties (e.g. exponential of a sum is the product of the exponentials)
 - The special properties which lead to the choice of base e^x .
 - = Compute their limits, derivatives, and integrals $\left(\frac{d}{dx}(e^x) = e^x, \int e^x dx = e^x + C\right)$
 - Chain rule with exponentials: $\left(\frac{d}{dx}\left(e^{g(x)}\right) = g'(x) e^{g(x)}\right)$.
 - Hyperbolic trig functions, with interesting properties similar to those for trig functions.
- Logarithms
 - Invert exponential equations
 - Logarithm properties (which are reflections of the exponential properties in the mirror)
 - = Compute their limits, derivatives, and integrals $\left(\frac{d}{dx}(\ln(x)) = \frac{1}{x}, \int_{x}^{1} dx = \ln(|x|) + C\right)$
 - Chain rule with Logarithms: $\left(\frac{d}{dx}\left(\ln(g(x))\right) = \frac{g'(x)}{g(x)}\right)$
 - Logarithmic differentiation: e.g. to compute the derivative of x^x .
- Inverse trigonometric functions
 - Inverse sine, inverse cosine, and inverse tangent

• Compute their limits, derivatives, and integrals $\left(\frac{d}{dx}\left(\sin^{-1}(x)\right) = \frac{1}{\sqrt{1-x^2}}, \frac{d}{dx}\left(\cos^{-1}(x)\right) = -\frac{1}{\sqrt{1-x^2}}$

 $\frac{d}{dx}\left(\tan^{-1}(x)\right) = \frac{1}{1+x^2}$

- shapes (e.g. sigmoidal arctan), limits, etc. Obtaining one from another via transformation (e.g. cos⁻¹(x) from sin⁻¹(x))
- Integration by parts (product rule backwards)

- $\int u \, dv = u \, v \int v \, du$, or my favorite $\int f(x) g'(x) \, dx = f(x) g(x) \int f'(x) g(x) \, dx$
- The idea that you're replacing one integral with another, and focused on a product for an integrand.
- Trigonometric integrals
 - Trigonometric identities (we only need these three, but others follow, mentioned below):
 - Pythagorean: $\cos^2(ax) + \sin^2(ax) = 1$.
 - cos(a + b) = cos(a)cos(b)-sin(a)sin(b)
 - sin(a + b) = sin(a)cos(b)+cos(a)sin(b)
 - $\int \sin^n(ax) \cos^m(ax) dx$ if at least one of *n* or *m* is an odd integer. Use substitution $u = \sin(ax)$, $du = a \cos(ax) dx$ or $u = \cos(ax)$, $du = -a \sin(ax) dx$, depending on whether *n* or *m* is odd. Then use Pythagorean identity.
 - $\int \sin^n(ax) \cos^m(ax) dx$ if both are even integers. Use trigonometric identities $\sin^2(ax) = \frac{1-\cos(2ax)}{2}$ and $\cos^2(ax) = \frac{1+\cos(2ax)}{2}$ to reduce the powers.
 - $\int \tan^n(ax) \sec^m(ax) dx$ if *m* is even. Use substitution $u = \tan(ax)$, $du = a \sec^2(ax) dx$ along with the Pythagorean identity $\sec^2(ax) = 1 + \tan^2(ax)$.
 - $\int \tan^n(ax) \sec^m(ax) dx$ if *n* is odd. Use substitution $u = \sec(ax)$, $du = a \sec(ax) \tan(ax) dx$ along with the Pythagorean identity $\tan^2(ax) = \sec^2(ax) 1$
- Trigonometric substitution
 - If the integral involves $\sqrt{a^2 x^2}$ use $x = a \sin(\theta)$ and $dx = a \cos(\theta) d\theta$.
 - If the integral involves $\sqrt{a^2 + x^2}$ use $x = a \tan(\theta)$ and $dx = a \sec^2(\theta) d\theta$.
 - If the integral involves $\sqrt{x^2 a^2}$ use $x = a \sec(\theta)$ and $dx = a \sec(\theta) \tan(\theta) d\theta$.

Studying

- Try problems you haven't worked from the exercises from the corresponding sections of our textbook(s).
- Review the assignments. Remember which ones caused you the most trouble. Find similar examples in the textbook to try.
- Review the daily agendas. I review them before writing the exams....
- Contact me by email if you have questions. You can also visit the Math/Stats Tutoring Lab.