Lab 2: Student Assignment

Week 2, January 18-24

MAT 229, Spring 2021

Special Constants

Standard notation	Mathematica notation
π≈3.14159	Pi
e≈2.71828	E

Commands

Functionality	Mathematica notation
plot the graph of a function	Plot[]
square root of something, $\sqrt{\dots}$	Sqrt[]
absolute value of something,[]	Abs[]
sine of something (radian mode), sin()	Sin[]
cosine of something (radian mode), cos()	Cos[]
tangent of something (radian mode), tan()	Tan[]
natural logarithm of something, ln()	Log[]

Exercises to submit

Exercise 1

The linear approximation for a function f(x) at x = a is the mx + b that comes from the tangent line y = mx + b to f(x) at x = a. It provides a simple approximation to f(x) for values of x near a.

$$f(x) \approx mx + b$$

Let $f(x) = 2^x - 2x + 3$.

■ Define this function in Mathematica.

$$f[x_] := 2^x - 2x + 3$$

Now let's use this function to create the tangent line at a given value x=x0. (Notice that the semi-colon suppresses reporting of the value of x0):

- Determine the linear approximation for f(x) at x = 0. mx + b = 4 + x (-2 + Log[2])
- What is the absolute value (decimal) of the difference between f(1) and your linear approximation at x = 1?

Let's use our powers as mathematicians to name something:

and let's check that things make sense:

 $In[114]:= Plot[\{f[x], tangent[x]\}, \{x, -1.2, 1.2\}]$

■ What is the absolute value (decimal) of the difference between f(-1) and your linear approximation at x = -1?

In[112]:= Abs[f[-1] - tangent[-1]]

N[%]

Out[112]=
$$-\frac{1}{2} + \text{Log}[2]$$

Out[113]= 0.193147

Exercise 2

Let
$$f(x) = \frac{e^{-x^2-x-1}}{x^2+1}$$
.

■ Define this function in Mathematica.

Note that for this one I defined the function as "f2" -- if you want to avoid collisions, you can give each function in a notebook a unique name. Remember your power as a mathematician -- to name things!

$$f2[x_] := E^{(-x^2-x-1)}/(x^2+1)$$

• Use your function to determine the y-intercept of y = f(x). Get a decimal value.

N[f2[0]]

• Get all real-valued critical numbers for f(x) as decimal values.

```
In[117]:= NSolve[f2'[x] == 0, x, Reals]
Out[117]= \{ \{ x \rightarrow -0.258056 \} \}
```

• Evaluate f(x) at your critical numbers to determine the y-values of the critical points.

```
ln[118] = f2[-0.25805587247847267]
Out[118]= 0.417694
```

• Evaluate f''(x) at your critical numbers to determine if each is a local maximum or a local minimum.

```
ln[119] = f2''[-0.25805587247847267]
Out[119]= -1.52082
             Local minimum points: none
             Local maximum points: (-0.25805587247847267, -1.52082)
```

• Get all real-valued second-order critical numbers for f(x) as decimal values, i.e. solve f''(x) = 0. These are points about which concavity can change, the inflection points.

```
In[120]:= NSolve[f2''[x] == 0, x, Reals]
Out[120]= \{ \{ x \rightarrow -0.775715 \}, \{ x \rightarrow 0.236704 \} \}
                  Inflection points:
```

 \blacksquare Make a plot of the graph of f(x) to verify your calculations for the y-intercept, the local max/min, and the inflection points.

I think that I'll have a little fun here:

Exercise 3

Let
$$g(x) = e^{2x}$$
 and $h(x) = 3e^{x} - 2$.

■ Plot the graphs of g(x) and of h(x) together on the same axes for various ranges of x-values until you have one that clearly shows the region bounded by these two graphs.

```
In[132]:= g[x_{-}] := E^{(2x)}

h[x_{-}] := 3E^{x} - 2

Plot[{g[x], h[x]}, {x, 0, 1}]
```

• Get decimal numbers for the x-values of the intersection points. Intersection points: $x \approx 0$, 0.693147

$$\label{eq:localization} $\inf[136] := NSolve[g[x] := h[x], x, Reals]$ $$ Out[136] := \{\{x \to 0.\}, \{x \to 0.693147\}\}$ $$$$

• Find the area of the region bounded by y = g(x) and y = h(x). Area: 0.113706

We can see that h is on top, because ultimately g has to grow faster!

$$In[137]:=$$
 NIntegrate[h[x] - g[x], {x, 0, 0.6931471805599453`}]
Out[137]= 0.113706

Exercise 4

Let
$$g(x) = x^3 - 6x$$
 and $h(x) = x^2 - 3x - 2$.

$$ln[154]:= g[x_] := x^3 - 6x$$

 $h[x_] := x^2 - 3x - 2$

■ Plot the graphs of q(x) and of h(x) together on the same axes for various ranges of x-values until you have one that clearly shows the regions bounded by these two graphs.

$$In[157]:= Plot[{g[x], h[x]}, {x, -2, 2.5}]$$

• Get exact numbers for the x-values of the intersection points.

Intersection points:
$$x = 2$$
, $\frac{1}{2} \left(-1 - \sqrt{5} \right)$, $\frac{1}{2} \left(-1 + \sqrt{5} \right)$

$$\begin{array}{l} & \text{In[159]:= Solve[g[x] == h[x], x]} \\ & \text{Out[159]= } \left\{ \left\{ x \to 2 \right\}, \, \left\{ x \to \frac{1}{2} \, \left(-1 - \sqrt{5} \, \right) \right\}, \, \left\{ x \to \frac{1}{2} \, \left(-1 + \sqrt{5} \, \right) \right\} \right\} \end{array}$$

■ Find the combined area of the regions bounded by y = g(x) and y = h(x).

Area: 5.94605

Integrate [Abs[g[x] - h[x]],
$$\{x, \frac{1}{2}(-1 - \sqrt{5}), 2\}$$
]

N[%]

Out[161]= $\frac{25}{24}(-1 + 3\sqrt{5})$

Exercise 5

Out[162] = 5.94605

Let
$$p(x) = x^3$$
 and $q(x) = -x^2 + 3$.

$$ln[163] = p[x_] := x^3$$

 $q[x_] := -x^2 + 3$

■ Plot the graphs of g(x) and of h(x) together on the same axes for various ranges of x-values in the first quadrant until you have one that clearly shows the regions bounded by these two graphs for $x \ge 0$.

• Get the x-values of that intersection point.

Intersection point: $x \approx 1.17456$

$$\label{eq:local_local_local_local_local} $$\inf[170]:=$ NSolve[p[x] == q[x], x, Reals]$$ $$ Out[170]= $$ $\{ x \rightarrow 1.17456 \} $$$$

■ Find the volume for the solid obtained by rotating about the *x*-axis the region bounded by y = p(x) and y = q(x) for $x \ge 0$.

Volume: 23.049

$$ln[173] = Integrate[Pi(q[x]^2 - p[x]^2), \{x, 0, 1.1745594102929802`\}]$$
Out[173] = 23.049