
Lab 2: Student Assignment
Week 2, January 18-24

MAT 229, Spring 2021

Special Constants
Standard notation Mathematica notation

π ≈ 3.14159 Pi
e ≈ 2.71828 E

Commands
Functionality Mathematica notation

plot the graph of a function Plot[ ...]
square root of something, … Sqrt[ ...]
absolute value of something, … Abs[ ...]

sine of something (radianmode), sin(…) Sin[ ...]
cosine of something (radianmode), cos(…) Cos[ ...]
tangent of something (radianmode), tan(…) Tan[ ...]
natural logarithmof something, ln(…) Log[ ...]

Exercises to submit

Exercise 1

The linear approximation for a function f(x) at x = a is the mx + b that comes from the tangent line 

y =mx + b to f(x) at x = a. It provides a simple approximation to f(x) for values of x near a.
f(x) ≈mx + b

Let f(x) = 2x - 2 x + 3.

◼ Define this function in Mathematica.

f[x_] := 2^x - 2 x + 3

Now let’s use this function to create the tangent line at a given value x=x0. (Notice that the semi-colon 

suppresses reporting of the value of x0):



��������� x0 = 0;
f'[x0]
f[x0]

f'[x0] x - x0 + f[x0]

��������� -2 + Log[2]

��������� 4

��������� 4 + x -2 + Log[2]

◼ Determine the linear approximation for f(x) at x = 0.
mx + b = 4+x (-2+Log[2])

◼ What is the absolute value (decimal) of the difference between f(1) and your linear approximation at 
x = 1?

Let' s use our powers as mathematicians to name something :

��������� tangent[x_] := 4 + x -2 + Log[2]

Abs[f[1] - tangent[1]]
N[%]

��������� 1 - Log[2]

��������� 0.306853

and let’s check that things make sense:

��������� Plot[{f[x], tangent[x]}, {x, -1.2, 1.2}]

���������
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◼ What is the absolute value (decimal) of the difference between f(-1) and your linear approximation 

at x = -1?
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��������� Abs[f[-1] - tangent[-1]]
N[%]

��������� -
1

2
+ Log[2]

��������� 0.193147

Exercise 2

Let f(x) = e-x2-x-1

x2+1 .

◼ Define this function in Mathematica. 

Note that for this one I defined the function as “f2” -- if you want to avoid collisions, you can give each 

function in a notebook a unique name. Remember your power as a mathematician -- to name things!

f2[x_] := E^-x^2 - x - 1  x^2 + 1

◼ Use your function to determine the y-intercept of y = f(x). Get a decimal value.

N[f2[0]]

◼ Get all real-valued critical numbers for f(x) as decimal values.

��������� NSolve[f2'[x] ⩵ 0, x, Reals]

��������� {{x → -0.258056}}

◼ Evaluate f(x) at your critical numbers to determine the y-values of the critical points.

��������� f2[-0.25805587247847267`]

��������� 0.417694

◼ Evaluate f″(x) at your critical numbers to determine if each is a local maximum or a local minimum.

��������� f2''[-0.25805587247847267`]

��������� -1.52082

Local minimum points: none
Local maximum points: (-0.25805587247847267, -1.52082)

◼ Get all real-valued second-order critical numbers for f(x) as decimal values, i.e. solve f″(x) = 0. These 

are points about which concavity can change, the inflection points.

��������� NSolve[f2''[x] ⩵ 0, x, Reals]

��������� {{x → -0.775715}, {x → 0.236704}}

Inflection points: 

◼ Make a plot of the graph of f(x) to verify your calculations for the y-intercept, the local max/min, and 

the inflection points.

I think that I’ll have a little fun here: 
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Show

Plot[f2[x], {x, -2, 1.5}],

ListPlot

{

{-0.775714860650307`, f2[-0.775714860650307`]},
{0.23670380674925937`, f2[0.23670380674925937`]},
{-0.25805587247847267`, f2[-0.25805587247847267`]}

}, PlotMarkers →  



���������
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Exercise 3

Let g(x) = e2 x and h(x) = 3 ex - 2.

◼ Plot the graphs of g(x) and of h(x)  together on the same axes for various ranges of x-values until you 

have one that clearly shows the region bounded by these two graphs.

��������� g[x_] := E^2 x

h[x_] := 3 E^x - 2
Plot[{g[x], h[x]}, {x, 0, 1}]

���������
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◼ Get decimal numbers for the x-values of the intersection points.
Intersection points: x ≈0, 0.693147

��������� NSolve[g[x] ⩵ h[x], x, Reals]

��������� {{x → 0.}, {x → 0.693147}}

◼ Find the area of the region bounded by y = g(x) and y = h(x).
Area: 0.113706

We can see that h is on top, because ultimately g has to grow faster!

��������� NIntegrate[h[x] - g[x], {x, 0, 0.6931471805599453`}]

��������� 0.113706

Exercise 4

Let g(x) = x3 - 6 x and h(x) = x2 - 3 x - 2.

��������� g[x_] := x^3 - 6 x
h[x_] := x^2 - 3 x - 2

◼ Plot the graphs of g(x) and of h(x)  together on the same axes for various ranges of x-values until you 

have one that clearly shows the regions bounded by these two graphs.

��������� Plot[{g[x], h[x]}, {x, -2, 2.5}]

���������
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◼ Get exact numbers for the x-values of the intersection points.
Intersection points: x = 2, 1

2 -1 - 5 , 1
2 -1 + 5 

��������� Solve[g[x] == h[x], x]

��������� {x → 2}, x →
1

2
-1 - 5 , x →

1

2
-1 + 5 

◼ Find the combined area of the regions bounded by y = g(x) and y = h(x).
Area: 5.94605
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��������� IntegrateAbs[g[x] - h[x]], x,
1

2
-1 - 5 , 2

N[%]

���������
25

24
-1 + 3 5 

��������� 5.94605

Exercise 5

Let p(x) = x3 and q(x) = -x2 + 3.

��������� p[x_] := x^3
q[x_] := -x^2 + 3

◼ Plot the graphs of g(x) and of h(x)  together on the same axes for various ranges of x-values in the first 
quadrant until you have one that clearly shows the regions  bounded by these two graphs for x ≥ 0.

��������� Plot[{p[x], q[x]}, {x, 0, 1.5}]
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◼ Get the x-values of that intersection point.
Intersection point: x ≈1.17456

��������� NSolve[p[x] ⩵ q[x], x, Reals]

��������� {{x → 1.17456}}

◼ Find the volume for the solid obtained by rotating about the x-axis the region bounded by y = p(x) 
and y = q(x) for x ≥ 0.

Volume: 23.049

��������� IntegratePi q[x]^2 - p[x]^2, {x, 0, 1.1745594102929802`}

��������� 23.049
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