Lab 3: Student Assignment

Week 3, January 25-31

MAT 229, Spring 2021

Special Constants

Standard notation | Mathematica notation

π≈3.14159	Pi
e≈2.71828	E

Commands

Functionality	Mathematica notation
plot the graph of a function	Plot[]
square root of something, $\sqrt{\ldots}$	Sqrt[]
absolute value of something,	Abs[]
sine of something (radian mode), sin()	Sin[]
cosine of something (radian mode), cos()	Cos[]
tangent of something (radian mode), tan()	Tan[]
natural logarithm of something, ln()	Log[]
inverse sine of something, $\sin^{-1}()$	ArcSin[]
inverse cosine of something, $\cos^{-1}()$	ArcCos[]
inverse tangent of something, $tan^{-1}()$	ArcTan[]
integrate something, $\int ()$	Integrate[]

Exercises to submit

Exercise 1

The linear approximation for a function f(x) at x = a is the mx + b that comes from the tangent line y = mx + b to f(x) at x = a. It provides a simple approximation to f(x) for values of x near a.

 $f(x) \approx m x + b$

Let $f(x) = \tan^{-1}(4x) - 2x + 3$.

Define this function in Mathematica.

- Define x0=1/2 (if you use a semi-colon after your definition, nothing will print -- but the parameter x0 will be defined. Sometimes you don't want to see so much stuff....).
- Determine the linear approximation for f(x) at x = x0.
- Define this linear function as g(x) in Mathematica.
- Plot both f(x) and g(x) on [-1,2].
- What is the absolute value (decimal) of the difference between f(1) and g(1)? In other words, how bad is the approximation at x=1?
- What is the absolute value (decimal) of the difference between *f*(2) and *g*(2)? In other words, how bad is the approximation at x=2?

Exercise 2

Let $f(x) = \sin^{-1}\left(\frac{x}{2}\right) + \ln(x^2 + 1) - 2$.

- Define this function in Mathematica.
- Use your function to determine the *y*-intercept of y = f(x). Get a decimal value.
- Get all real-valued critical numbers for *f*(*x*) as decimal values. Name them xleft and xright, where xleft<xright.
- Evaluate f(x) at your critical numbers to determine the *y*-values of the critical points.
- Evaluate f''(x) at your critical numbers to determine if each is a local maximum or a local minimum.

Local minimum points: Local maximum points:

- Determine the inflection points for this function, and name it xinf.
- Make a plot of the graph of f(x) to verify your calculations for the y-intercept, the local max/min points, and inflection points. If you'd defined everything correctly, then you'll see everything looking beautiful below:

```
In[=]:= Show[
    Plot[f[x], {x, -3, 1}],
    ListPlot[{{xleft, f[xleft]}, {xright, f[xright]}, {xinf, f[xinf]}}]
]
```

Exercise 3

Let $g(x) = \frac{1}{a+x^2}$ and $h(x) = \frac{x^2}{b+x}$. Define these in Mathematica. Then set a to 1 and b to 2.

- Plot the graphs of g(x) and of h(x) together on the same axes for various ranges of x-values until you have one that clearly shows the region bounded by these two graphs. Make sure to zoom in on the action!
- Get decimal numbers for the *x*-values of the intersection points. Name them xleft and xright. Intersection points: *x* ≈
- Modify the "Show" command from Exercise 2, to include the intersection points. You'll know if you've got them right!
- Find the area of the region bounded by y = g(x) and y = h(x). Area:
- Does your area make sense? Can you approximate it, and are you close?

Exercise 4

 $\operatorname{Let} p(x) = \ln\left(\frac{3}{1+x^2}\right)$

- Plot this function to see the region bounded by the x-axis and y = p(x).
- Get the *x*-intercepts. Intersection point: *x* ≈
- Sketch (you could use Mathematica) the solid obtained by rotating the region bounded by y = p(x) and the x-axis about the line y=-1.
- Find the volume of this solid: Volume: