
MAT229 Quiz 02, Spring 2025

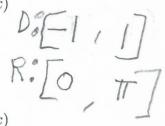
Name:

1. (2 pts) Find $\frac{dy}{dx}$ for $y = \tan^{-1}(x^2)$

- 2. (2 pts) Use the given values to find $(f^{-1})'(a) : f(\pi) = 0, f'(\pi) = -1, a = 0.$
- 2. (2 pts) Use the given values to find $(f^{-1})'(a): f(\pi) = 0, f'(\pi) = -1, a = 0.$

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$$
 $f(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$
 $f(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$
 $f(f^{-1})'(a) = -1$

2. (2 pts) Use the given values to find $(f^{-1})'(a)$: $f(\pi) = 0, f'(\pi) = -1, a = 0.$

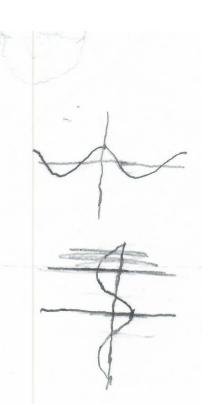

$$(f^{-1})'(a) = f'(f^{-1}(a))$$

 $(f^{-1})'(0) = -1$
 $(f^{-1})'(0) = -1$

3. (2 pts) Give the standard domains and ranges of

a. arccos(x)

3. (2 pts) Give the standard domains and ranges of



b. arctan(x)

1

b. arctan(x)

4. (4 pts) Each of the following functions **could** be invertible on its domain. Specify any conditions to each that will ensure that it is or becomes invertible on the greatest domain possible, and specify an appropriate domain.

a.
$$\frac{1}{x^n}$$

$$n\in\mathbb{N}$$

b.
$$\frac{ax+b}{cx+d}$$

$$c \neq 0$$

any conditions to each that will ensure that it is or becomes invidence domain possible, and specify an appropriate domain.	n its domain. Specify vertible on the greatest
a. $\frac{1}{x^n}$ $n \in \mathbb{N}$	
invertible because it is Domain = (-00,00)	one to one,
$\frac{1}{x^3}$ $\frac{1}{x} = \text{invertible}$ (i)	when n is odd good sone to one
14	one to one nen nisan even number, nisali number,
b. $\frac{ax+b}{cx+d}$ $c \neq 0$	omain to to make it or to one a invert
cx+d	to one a invert
invertible when one-to-one	
	Jes
1 Vyran	
byd wnen a = c	
Domain: (-00,00)	

4. (4 pts) Each of the following functions could be invertible on its domain. Specify