Absolute Convergence

MAT 229, Spring 2021

Week 11

Supporting materials

If you wish to get a different perspective on the notes below, try either of the following textbook sections.

- Stewart's Calculus
 - Section 11.6: Absolute convergence and the ratio and root tests
- Boelkins/Austin/Schlicker's Active Calculus

Section 8.3: Series of real numbers

Review

Question

The alternating series test guarantees $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ converges if what is true about a_k ? (Three things....)

Questions

- Does the *p*-series $\sum_{k=1}^{\infty} \frac{1}{k}$ converge or diverge? Why or why not?
- Does the alternating *p*-series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$ converge or diverge? Why or why not?

(Video)

Questions

- Does the alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k}{e^k}$ converge or diverge? Why or why not? (<u>Video</u>)
- Does the alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} \cos(\frac{1}{k})$ converge or diverge? Why or why not? (<u>Video</u>)
- Does the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{\sin(k)}{k^2}$ converge or diverge? Why or why not? (<u>Video</u>)

Alternating series error estimate

Questions

- What is the error in approximating the alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ with its n^{th} partial sum?
- What is an easy estimate on this error?

(Video)

Questions

- What partial sums approximate $\sum_{k=1}^{\infty} (-1)^k \frac{1}{k}$ with error less than 0.001? (<u>Video</u>)
- Approximate $\sum_{k=1}^{\infty} (-1)^k \frac{1}{k^3}$ with error less than 0.001. (<u>Video</u>)

Absolute convergence test

What if a series has some positive and some negative terms and neither the divergence test nor the alternating series test are applicable?

Absolute convergence test

If $\sum_{k=0}^{\infty} b_k | converges$ then $\sum_{k=0}^{\infty} b_k$ converges.

Questions

Consider the series $1 + \frac{1}{4} - \frac{1}{9} - \frac{1}{16} + \frac{1}{25} + \frac{1}{36} - \frac{1}{49} - \frac{1}{64} + \dots$

- Does the divergence test imply anything about this sequence?
- Is the alternating series test applicable?
- Is the absolute convergence test applicable?
- Does this series converge or diverge?

(Video)

Questions

Consider the series $\sum_{k=1}^{\infty} \frac{\cos(k)}{k^3}$.

- Begin by applying the absolute convergence test to look at $\sum_{k=1}^{\infty} \frac{|\cos(k)|}{k^3}$. What are the first 5 partial sums of this series?
- Comparing this series to one you are familiar with, can you find a bound for the sequence of partial
- Does $\sum_{k=1}^{\infty} \frac{|\cos(k)|}{k^3}$ converge?
- Does $\sum_{k=1}^{\infty} \frac{\cos(k)}{k^3}$ converge?
- How can we estimate the error in approximating $\sum_{k=1}^{\infty} \frac{\cos(k)}{k^3}$ with $\sum_{k=1}^{10} \frac{\cos(k)}{k^3}$?

(Video)

Ratio and root tests

Two tests that will be the workhorses for our future analyses are based on comparisons to geometric series. They incorporate the absolute convergence test.

Questions

- What is the form of a geometric series?
- Under what circumstances does a geometric series converge or diverge?

(Video)

Questions

- Let c_k be the k^{th} term of a geometric series. What is $\frac{c_{k+1}}{c_k}$? What is $\lim_{k\to\infty}\frac{c_{k+1}}{c_k}$? What about $\lim_{k\to\infty}\frac{c_{k+1}}{c_k}$? Implies the convergence of $\sum_{k=1}^{\infty} c_k$?
- Let c_k be the k^{th} term of a geometric series. What is $\sqrt[k]{c_k}$? What is $\lim_{k\to\infty} \sqrt[k]{c_k}$? What about $\lim_{k\to\infty} \sqrt[k]{c_k}$ Implies the convergence of $\sum_{k=0}^{\infty} c_k$?

(Video)

Ratio test

Given any series $\sum_{k=1}^{\infty} b_k$, evaluate the limit of the ratio of successive terms, ignoring any signs, $\lim_{k\to\infty} \left| \frac{b_{k+1}}{b_{k}} \right|$.

• If
$$\lim_{k\to\infty} \left| \frac{b_{k+1}}{b_k} \right| = L$$
 where $L < 1$, then $\sum_{k=1}^{\infty} b_k$ converges.

- If $\lim_{k\to\infty} \left| \frac{b_{k+1}}{b_k} \right| = L$ where L > 1, then $\sum_{k=1}^{\infty} b_k$ diverges.
- If $\lim_{k\to\infty} \left| \frac{b_{k+1}}{b_k} \right| = 1$, then you must use another convergence test. The series doesn't compare to a geometric series.

Questions

Apply the ratio test to determine the convergence of the following series.

- $= \sum_{k=1}^{\infty} \frac{k}{4^k}$ (Video)
- $\sum_{k=1}^{\infty} \frac{(-3)^k}{k!}$ (Video)

Root test

Given any series $\sum_{k}^{\infty} b_k$, evaluate the limit of the k^{th} root, ignoring any signs, of the k^{th} term, $\lim_{k \to \infty} \sqrt[k]{1 \cdot b_k \cdot 1}$.

- If $\lim_{k\to\infty} \sqrt[k]{|b_k|} = L$ where L < 1, then $\sum_{k=0}^{\infty} b_k$ converges.
- If $\lim_{k\to\infty} \sqrt[k]{|b_k|} = L$ where L > 1, then $\sum_{k=0}^{\infty} b_k$ diverges.
- If $\lim_{k\to\infty} \sqrt[k]{|b_k|} = L$ where L = 1, then you must use another convergence test. The series doesn't compare to a geometric series.

Questions

Apply the root test to determine the convergence of the following series.

- $\blacksquare \sum_{k=1}^{\infty} \frac{k}{4^k}$ (Video)

Conditional convergence

Definitions

- If $\sum_{k=0}^{\infty} b_k b_k$ converges, then by the absolute convergence test we know $\sum_{k=0}^{\infty} b_k$ converges. We say $\sum_{k=0}^{\infty} b_k$ converges absolutely.
- If $\sum_{k=0}^{\infty} b_k b_k$ diverges, but by the alternating series test we find $\sum_{k=0}^{\infty} b_k$ converges, we say $\sum_{k=0}^{\infty} b_k$ converges conditionally.

A given series either converges absolutely, converges conditionally, or it diverges.

Question

We have discussed a series that meets the definition of conditional convergence. What is it? (Video)

Question

Determine whether the series converges absolutely, converges conditionally, or diverges.

$$= \sum_{k=0}^{\infty} (-1)^k \frac{e^k}{k+1}$$
 (Video)

Homework

■ IMath problems on the absolute convergence test.