Weekly Assignment #7

MAT 229, Spring 2021

Instructions: Show your work!

1. Recursively defined sequence

a. Determine whether the sequence defined as follows is convergent or divergent.

$$a_1 = 1$$

$$a_n = 4 - a_{n-1}$$
 for $n > 1$

If it converges, what does it converge to. If its diverges, describe how it diverges. For example, does it converge to ∞ or $-\infty$? Does it stay bounded? Does it oscillate?

b. Answer the same questions for this same recursive definition $a_n = 4 - a_{n-1}$ but with first term $a_1 = 2$

2. Geometric series

- **a.** Find the value of b such that $\sum_{k=1}^{\infty} \left(\frac{1}{1+b}\right)^k = 2$.
- **b.** Express the repeating decimal number 0.467467467 as a ratio of integers by first writing it as a geometric sum.
- c. Repeat the second part with the repeating decimal number 0.999 What's the surprise?

3. Partial sums

- **a.** If the n^{th} partial sum of series $\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \dots$ is $S_n = 3 \frac{n}{2^n}$. Does the series converge? If so, to what value?
- **b.** Write the first four partial sums of $\sum_{k=1}^{\infty} \left(\frac{k}{2^k} \frac{k+1}{2^{k+1}}\right)$. What is the form of S_n ? Does the series converge? If so, to what value?