Section Summary: The dot product

a. **Definitions**

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **dot product** of **a** and **b** is the number $\mathbf{a} \cdot \mathbf{b}$ given by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Two non-zero vectors **a** and **b** are called **perpendicular** or **orthogonal** if the angle between them is $\theta = \frac{\pi}{2}$.

The **direction angles** of a non-zero vector **a** are the angles α , β , and γ that the vector makes with the positive *x*-, *y*-, and *z*-axes. The cosines of these angles are called the **direction cosines**.

The vector projection of **b** onto **a** is

$$\operatorname{proj}_{a}\mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}$$

The scalar projection of **b** onto **a** is

$$\operatorname{comp}_{a}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

In particular, the **unit vector** created from **a** would be

$$\hat{a} = \frac{\mathbf{a}}{|\mathbf{a}|}$$

(the vector with the same direction, but unit length).

b. Theorems

If θ is the angle between vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Corollary:

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

Hence, **a** and **b** are orthogonal (i.e. perpendicular) \iff **a** \cdot **b** = 0

c. Properties/Tricks/Hints/Etc.

Properties of the dot product:

1. $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$ 2. $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ 3. $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ 4. $(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$ 5. $\mathbf{0} \cdot \mathbf{a} = 0$

d. Summary

The dot product is a way of combining two vectors to get a scalar (i.e., a number). It effectively measures the shadow that one vector casts on the other, and if the dot product is zero, the two vectors are orthogonal (i.e. perpendicular): neither vector casts a shadow on the other.