Trigonometric Integration

MAT 229, Spring 2021

Week 4

Supporting materials

If you wish to get a different perspective on the notes below, try either of the following textbook sections.

■ Stewart's Calculus

Section 7.2: Trigonometric integrals

■ Boelkins/Austin/Schlicker's Active Calculus

Section 5.3: Integration by substitution

Review

We have three antidifferentiation techniques:

- **1.** Recognize it immediately as the derivative of some function, for example
- $\int e^x dx = e^x + C$ 2. Try substituting for some internal part (the chain rule backwards). Don't forget the differential. For
- example, to evaluate $\int x^2 \cos(x^3) dx$ use the substitution $u = x^3$ and $du = 3x^2 dx$ to replace the above integral with the simpler one,

$$\int_{3}^{1} \cos(u) \, du = \frac{1}{3} \sin(u) + C = \frac{1}{3} \sin(x^{3}) + C$$

- 3. Integration by parts (the product rule backwards). Here it is in two different forms:
 - a. $\int u \, dv = u \, v \int v \, du$

b.
$$\int u(x) v'(x) dx = u(x) v(x) - \int v(x) u'(x) dx$$

Today we introduce trigonometric integrals, as a special class of integrals that seem to arise frequently, and that involve particular trig substitutions.

Questions

Choose an appropriate technique to evaluate the following integrals.

- Find the area of the region bounded above by $y = x e^{-x}$, below by the x-axis, and the line x = 5.
- Find the volume of the surface of revolution generated by rotating about the *x*-axis the region bounded above by $y = x \sec(x^3)$, below by the *x*-axis, and the line x = 1.

Trigonometric identities

Pythagorean identities

$$cos^2(\theta) + sin^2(\theta) = 1$$

Questions

• Divide this equation by $\cos^2(\theta)$ to get another Pythagorean identity.

$$\frac{\cos^{2}(\theta)}{\cos^{2}(\theta)} + \frac{\sin^{2}(\theta)}{\cos^{2}(\theta)} = \frac{1}{\cos^{2}(\theta)}$$

$$\longrightarrow 1 + \tan^{2}(\theta) = \sec^{2}(\theta)$$

■ Divide this equation by $\sin^2(\theta)$ to get another Pythagorean identity.

$$\frac{\cos^2(\theta)}{\sin^2(\theta)} + \frac{\sin^2(\theta)}{\sin^2(\theta)} = \frac{1}{\sin^2(\theta)}$$

$$\rightarrow \cot^2(\theta) + 1 = \csc^2(\theta)$$

Double angle formulas

There are two identities (other than the Pythagorean) that I think are worth memorizing: the sine and cosine sum formulas are

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha)$$
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

You can get the difference formulas from the sum formulas, using the symmetry properties of sines and cosines (so you don't need to memorize those -- but you do need to know those symmetry properties!):

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \sin(\beta)\cos(\alpha).$$
$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

Questions

- What is $\sin(2\theta) = \sin(\theta + \theta)$? (Video)
- What is $cos(2 \theta) = cos(\theta + \theta)$? (Video)
- **Rewrite this using a Pythagorean trigonometric identity so that cos(2 \theta) is in terms of only cos(\theta).**
- **Rewrite this using a Pythagorean trigonometric identity so that cos(2 \theta) is in terms of only sin(\theta).** (Video)

Sine squared and cosine squared

The results above give us two trigonometric identities that we will use below.

$$\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}$$

$$\bullet \sin^2(\theta) = \frac{1 - \cos(2\,\theta)}{2}$$

Trigonometric integrals

Here are some techniques for evaluating integrals of the following forms.

- $\int \tan^m(x) \sec^n(x) dx$
- $= \int \cot^m(x) \csc^n(x) dx$

Questions/review:

Integration is just differentiation in reverse: what are the following derivatives?

- $=\frac{d}{dx}\cos(x)$
- $=\frac{d}{dx}\sin(x)$
- $=\frac{d}{dx}\tan(x)$
- $\blacksquare \frac{d}{dx} \sec(x)$
- $=\frac{d}{dx}\cot(x)$
- $=\frac{d}{dx}\csc(x)$

Questions

- Evaluate $\int \cos^4(x) \sin(x) dx$ using the substitution $u = \cos(x)$.(Video)
- Evaluate $\int \sin^6(x) \cos^3(x) dx$ by writing this as $\int \sin^6(x) \cos^2(x) \cos(x) dx = \int \sin^6(x) (1 - \sin^2(x)) \cos(x) dx.$ (Video)
- Find the area under the curve $y = \sin^3(x) \cos^3(x)$ for $0 \le x \le \pi/2$. (Video)
- Evaluate $\int \cot^4(x) \csc^2(x) dx$. (Video)
- Evaluate $\int \tan^2(x) \sec^4(x) dx$ by first writing $\sec^4(x) = \sec^2(x) \sec^2(x)$, using a Pythagorean identity on one of the factors, and then making an appropriate substitution. (Video)

Questions

- Use the trigonometric identity $\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}$ to evaluate $\int \cos^2(\theta) d\theta = \int \frac{1 + \cos(2\theta)}{2} d\theta. \text{ (Video)}$
- Find the volume of the solid of revolution obtained by rotating about the x-axis the region above the x-axis and one arch of the sine curve $y = \sin(x)$. (Video)

Homework

IMath problems on trigonometric integrals.