
Applied Numerical Integration
MAT 229, Spring 2021

Week 6

Cadaver Temperature:
An Exercise in Modeling Post-Mortem

Temperatures in the Human Body

The Data
The data for this modeling exercise is taken from the article Post-Mortem Temperature and the Time of
Death (G. S. W. De Saram, G. Webster, N. Kathirgamatamby, Post-Mortem Temperature and the Time of
Death, 46 J. Crim. L. Criminology & Police Sci. 562 (1955-1956)).

We digitized the data (pulled it from tables) based on the deaths of 40 executed prisoners, and records

of their bodies’ rectal temperatures at hourly intervals for 12 hours following their deaths.

Per the model you’ll see in a moment, we scaled the data using the initial temperature of the body (at
9am) and the ambient, background temperature (we might expect the body’s temperature to approach

this temperature, if given enough time).
Then we averaged the hourly temperatures for all of the 28 time series with complete records, to get
the following temperature data over time:

temps = {1., 0.9222684153743212, 0.8512044304340011,
0.7870267914889395, 0.7261989779202581, 0.6776207521636185,
0.6237002302952035, 0.5709996871736893, 0.5254784973612153,
0.4817907940680118, 0.43677400085447377, 0.3942083969507442};

times = {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

(* 9am and every hour after until 8pm 20 hour *)

The Model
Newton’s law of cooling suggests that a body will equilibrate with its environment by slowly losing heat
in what might appropriately be called a “dying (exponential) fashion” (the following model for rectal
temperature is featured in the same article):

TempRectal(t; s, r)-TempAmbient =(TempInitial-TempAmbient) s e rt

where

1. TempRectal is the observed temperature of the body, which is a function of time;
2. TempAmbient is the average ambient temperature in the area where the body is stored;
3. TempInitial is the initial temperature of the body, at 9:00 am; while executions took place at

8:00 am, there was a delay to make sure that the prisoner was officially dead, etc. It was usually 15

minutes or so before the person was actually declared dead. Then they were removed from the

premises, taken to the morgue, etc.

So this scaled data is defined as:

 temp(t; s, r) = TempRectal(t;s,r)-TempAmbient
TempInitial-TempAmbient ;

This new variables temp should therefore be an exponential function:

temp(t; s, r)= s e rt

where r should be negative. We o�en need to make some good guesses for the parameters of our
model, s and r, before doing our model building.

1. We know that the temperature ratio is roughly 40% (or .40) of its original value by 12 hours later,
so r ≅ Log[.40]/12 = -0.0763576

2. Notice that s e9 r ≅ 1; so s ≅ e-9 r = e 9 * 0.0763576 ≅ 2

So we’re ready to find a model!

Using a process called “non-linear Regression” (which is

based strongly on calculus!) we obtain the following

2 ��� num-int-Example.nb

FittedModel ������ ⅇ-��������� � 

Notice that we were pretty close in our parameter guesses! Notice also that the model seems to fit the

data pretty well:

10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

Computing heat loss as an integral, in 3 different ways:
The body contains its full complement of heat at the outset, then slowly loses it to the environment
over time. How much heat is lost over time? The rate at which it loses heat decreases over time (the

slope of the curve).

We will compute the fraction lost over the first 10 hours as the integral

HeatLoss=∫9
19temp[t]ⅆt(-s /r) .

(Don’t worry about where that came from! We choose to look at the first 10 hours because we want to

be able to use Simpson’s Rule, which requires an even number of subintervals....)

The integral may be computed in three different ways (at least -- probably an infinite number of differ-
ent ways, but we only have time for three!:).

Method 1: using the model as though it’s perfect:

��������� s = 2.095301183703536;
r = -0.08170156048049892;
temp[t_] := s E^(r t)

Our model is just an exponential, so it’s easy to compute the answer:

���� (�) = � � �� = ������ ⅇ-��������� �

num-int-Example.nb ���3

Okay then: we have a model (which we derived from the data). Because of the form of the model,
notice that we can simplify this to

HeatLoss=∫9
19temp[t]ⅆt(-s /r) = -r∫9

19ert ⅆt

We integrate that easily to get an anti-derivative: -ert , which we evaluate at its endpoints to get about
0.267601:

��������� Integrate[temp[t], {t, 9, 19}]  (-s / r)

(* and, as we suspected, we get *)

-E^r 19 - E^r 9

��������� 0.267601

��������� 0.267601

Method 2: using the model, but approximating its integral with Simpson’s rule:

Note: we’re going to be introducing you to the “Sum” command in Mathematica in this week’s lab, which

will simplify these calculations when the number of subintervals becomes large.

Now let's use Simpson’s rule to evaluate this integral, with 10 subdivisions. So we will need to evaluate

the integrand (temp(t)) at the times 9, 10, ..., 19, and then weight them in the appropriate way. But
recall that

S2 n= 2Mn+Tn3

We want S10: so let’s compute Midpoint M5 and Trapezoid T5 approximations first. Remember, how-
ever, that Trapezoid Rule Tn is just the average of the le� and right rectangle rules.

Tn=
Le�n+Rightn

2

So, with n=5, we have the following:
a=9
b=19
n=5
Δx = 2  = b-a

n 

4 ��� num-int-Example.nb

deltaX = 2;

LRR = deltaX temp[9] + temp[11] + temp[13] + temp[15] + temp[17]

RRR = deltaX temp[11] + temp[13] + temp[15] + temp[17] + temp[19]

trap = LRR + RRR  2

trapApprox = trap / (-s / r)

�������� 2

�������� 7.4388

�������� 6.31739

�������� 6.8781

�������� 0.268196

So the estimate from the trapezoidal method is about 0.268196. Let’s move on to the midpoint method:
the Δx=2, still, but the choice of data changes: we look at

�������� mid = deltaX temp[10] + temp[12] + temp[14] + temp[16] + temp[18]

midApprox = mid  (-s / r)

�������� 6.85521

�������� 0.267303

The estimate from the midpoint rule is about 0.267303. Now we’re ready for the computation of Simp-
son’s, which will use all of the data, from temp[9] to temp[19]:

�������� simp = 2 * mid + trap  3

simpApprox = simp  (-s / r)

�������� 6.86284

�������� 0.267601

Hence our final (and hopefully best) estimate is Simpson’s S10, which is approximately 0.267601. Recall
that, using the model and integrating it exactly we obtained 0.267601. Exactly the same thing!

Method 3: using the data directly, without using the model at all (other than for
the computation of s and r, which are playing a role in the heat loss

calculation).

We can proceed to Simpson’s method using the data, rather than the function value calculations.

Again, let’s compute Midpoint M5 and Trapezoid T5 approximations first. The only difference in this

method is that, rather than computing using temp, we will be soliciting the data from the list of temps.
Again,

��������� temps

��������� {1., 0.922268, 0.851204, 0.787027, 0.726199, 0.677621,
0.6237, 0.571, 0.525478, 0.481791, 0.436774, 0.394208}

num-int-Example.nb ���5

Notice how we access an element of a list in Mathematica -- again, we’ll see more of this in the weeks

ahead. Note that lists in Mathematica are indexed beginning at 1. So temps[[1]] is the first element in

the list, corresponding to 9am.

��������� deltaX = 2;

LRR = deltaX temps[[1]] + temps[[3]] + temps[[5]] + temps[[7]] + temps[[9]]

RRR = deltaX temps[[3]] + temps[[5]] + temps[[7]] + temps[[9]] + temps[[11]]

trap = LRR + RRR  2

trapApprox = trap / (-s / r)

��������� 7.45316

��������� 6.32671

��������� 6.88994

��������� 0.268658

So the estimate from the trapezoidal method is about 0.268658. Now to the midpoint method:

��������� mid = deltaX temps[[2]] + temps[[4]] + temps[[6]] + temps[[8]] + temps[[10]]

midApprox = mid  (-s / r)

��������� 6.87941

��������� 0.268247

The estimate from the midpoint rule is about 0.268247. Now we’re ready for the computation of Simp-
son’s, which will use all of the data:

��������� simp = 2 * mid + trap  3

simpApprox = simp  (-s / r)

��������� 6.88292

��������� 0.268384

Hence our final estimate is Simpson’s S10, computed from the data directly, which is approximately

0.268384. Recall that, using the model and integrating it exactly we obtained 0.267601. Nearly the

same thing.

This method doesn’t require the construction of a model, which makes it much simpler! Numerical
integration techniques are particularly important when we have data -- o�en recorded at regular
intervals, so Δx is constant -- but no “function” lurking in the background.

Many industrial processes produce data like this, or sensing so�ware, etc. So these numerical routines

are important!

6 ��� num-int-Example.nb

