Trigonometric Integrals

Review

We have (at least) three antidifferentiation techniques at our disposal:

1. Recognize it immediately as the derivative of some function, for example

 $\int e^x dx = e^x + C$

(i.e. stare at it until the answer comes to you -- the most general method!).

2. Try substituting for some internal part. Don't forget the differential. For example, to evaluate $\int x^2 \cos(x^3) dx$ use the substitution $u = x^3$ and $du = 3x^2 dx$ to replace the above integral with the simpler one

$$\int \frac{1}{3} \cos(u) \, du = \frac{1}{3} \sin(u) + C = \frac{1}{3} \sin(x^3) + C$$

If you have limits (i.e. a definite integral), make sure that you clarify the variable to which the limits apply. In particular, don't substitute to a variable *u*, only to use limits appropriate to the original *x*....

3. Integration by parts:

 $\int u \, dv = u \, v - \int v \, du$ or, as given in my preferred form, $\int f(x) \, g'(x) \, dx = f(x) \, g(x) - \int f'(x) \, g(x) \, dx$

Questions

Choose an appropriate technique to evaluate the following integrals.

- Find the area of the region bounded above by $y = x e^{-x}$, below by the x-axis, and the line x = 5.
- Find the volume of the surface of revolution generated by rotating about the x-axis the region bounded above by $y = x \sec(x^3)$, below by the x-axis, and the line x = 1.

Trigonometric identities

Pythagorean identities

 $\cos^2(\theta) + \sin^2(\theta) = 1$

Questions

- Divide this equation by $\cos^2(\theta)$ to get another Pythagorean identity.
- Divide this equation by $\sin^2(\theta)$ to get another Pythagorean identity.

Double angle formulas

The sine and cosine sum formulas are very important:

 $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha) .$ $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$

Questions

- What is $sin(2 \theta) = sin(\theta + \theta)$?
- What is $\cos(2\theta) = \cos(\theta + \theta)$?
- Rewrite this using a Pythagorean trigonometric identity so that $cos(2 \theta)$ is in terms of only $cos(\theta)$.
- Rewrite this using a Pythagorean trigonometric identity so that $cos(2 \theta)$ is in terms of only $sin(\theta)$.

Trigonometric integrals

Questions

What are the following derivatives?

- $\frac{d}{dx}$ tan(x)
- $\frac{d}{dx} \sec(x)$
- $\frac{d}{dx} \cot(x)$
- $\frac{d}{dx} \csc(x)$

Questions

- Evaluate $\int \cos^4(x) \sin(x) dx$ using the substitution $u = \cos(x)$.
- Evaluate $\int \sin^6(x) \cos^3(x) dx$ by writing this as $\int \sin^6(x) \cos^2(x) \cos(x) dx = \int \sin^6(x) (1 \sin^2(x)) \cos(x) dx$.
- Find the area under the curve $y = \sin^3(x) \cos^3(x)$ for $0 \le x \le \pi/2$.
- Evaluate $\int \cot^4(x) \csc^2(x) dx$.
- Evaluate $\int \tan^2(x) \sec^4(x) dx$.
- Since $\cos(2\theta) = 2\cos^2(\theta) 1$, solve for $\cos^2(\theta)$ to get $\cos^2(\theta) = \frac{1+\cos(2\theta)}{2}$. Use this to evaluate $\int \cos^2(\theta) d\theta = \int \frac{1+\cos(2\theta)}{2} d\theta$.
- Find the volume of the solid of revolution obtained by rotating about the *x*-axis the region above the *x*-axis and one arch of the sine curve *y* = sin(*x*).