
Diophantus, ca. 2401

1 Introduction

So little is known of Diophantus, that the dates of his life are given
in the two century range 150 AD - 350 AD, likely »250 AD. He is
believed to have lived to be about 84 years. According to tradition
his age is determined from the \conundrum", dating from the ¯fth-
sixth century:

God granted him to be a boy for the sixth part of his
life, and adding a twelfth part to this, He clothed his cheeks
with down; He lit him the light of wedlock after a seventh
part, and five years after his marriage He granted him a son.
Alas! late-born wretched child; after attaining the measure
of half his father’s life, chill Fate took him. After consoling
his grief by this science of numbers for four years he ended
his life.

2 Works

Diophantus was proli¯c. He wrote

Arithmetica (13 Books { only 6 are now Extant)

On Polygonal Numbers of which only fragments now exist

Porisms (may have originally been part of Arithmetica, as in
the latter they are referenced as though they are there

In ancient and even in more recent times, commentaries would
frequently be written on notable books. Indeed, one measure of the
book's value to the professional community is the number of com-
mentaries written on it. For Arithmetica commentaries were written
by

1 c°2000, G. Donald Allen
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² Hypatia, daughter of Theon of Alexandria, who commented
only on the ¯rst 6 books.

² Psellus 11th century,
² Georgius Pachymeres (1240-1310)
² M. Plamides (1260-1310)
² several Arab mathematicians

Translations of Arithmetica:

² Regionontanus { 1463 ¯rst to call attention to Diophantus.

² Rafael Bombelli { 1570 translated a manuscript found in the
Vatican. It was not published but was included in his own book
Algebra (1572).

² Wilhelm Holzman (aka Xylander) { produced an excellent
Latin translation in 1575.

² Bachet { 1621, published the present standard edition. The
second edition was carelessly produced, but does contain the epoch-
making notes of Fermat { the editor was S. Fermat.

² Simon Stevin » 1585, French version of Books I{IV based on
Xylander.

² Otto Schultz { 1822
G. Wertheria » 1890 g German versions based on Bachet.

3 Arithmetica

Before considering several of the types of results found in Arithmetica
it is worth taking a few moments to consider a little background
about algebra and the types of problems Diophantus solves. In the
¯rst case, because geometrical reasoning is not particularly penalized
by rhetoric and was the dominant mathematical form of the day,
algebra was compelled to follow suit. However, the problems solved
by Diophantus are every bit as tricky today as they were two millenia
ago.
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To be speci¯c, we may ask what was the form of algebra in these
very early days? There are roughly three classi¯cations of algebra
centered on the form of presentation.

1. Rhetorical algebra » complete prose.
2. Syncopated Algebra » use of some abbreviations and symbols
{ Diophantus and latter to early 17th century

3. Symbolic Algebra » complete symbolic notation { no prose.

The last form did not appear until relatively recent times. Symbol-
ism was not in anything near wide usage until the early seventeenth
century. Pure symbolism in mathematical expression is unques-
tionably a contributing factor that has resulted in the explosion of
mathematics dating from that time, which if anything is expanding
today at an ever increasing pace2. Diophantus wrote with limited
symbols, but it must be surmised that after a length of time he must
have developed a deep intuition and problem familiarity that per-
mitted him to use many abbreviations (semi-symbolism) that never
appeared in the published works.

First of all the problems of Arithmetica are algebraic. Diophan-
tus was not the ¯rst to consider such problems nor was he the orig-
inator of his principle technique, that of false position. Indeed, the
Egyptians used the method of false position to solve relatively simple
algebraic equations. Recall the solution of the problem x+ 1

7
x = 19

was solved ¯rst by assuming that x = 7 and then correcting the
false solution by multiplication 7£ 19

8
. Other, similar, problems were

solved by this method as well. We have also seen the Babylonian
mathematicians solve simple linear systems using a false assump-
tion.

In Heron's Metrica several indeterminate problems are posed.
Indeterminate problems are of a type where there may be several
solutions and the student is asked to ¯nd one or all of them. In most
of these problems the student is asked to ¯nd an integer or rational
solutions. Here is an example of one such problem.

2Equally, one might argue that modern computers and computer algebra systems, with their immense
numeric and symbolic computational power may contribute to another explosive wave of mathematical
development, one that has only just begun. To be sure, the powerful mathematics is being done today
without any technology whatever and will continue throughout next millennium. However, the opportunities
that modern technology afford may inspire new directions of research impossible without them, just as
symbols permitted four centuries ago.
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Example. Find two rectangles for which the perimeter of the ¯rst
is three times that of the second and the area of the second is three
times that of the ¯rst. Mathematically, we are asked to ¯nd integers
a; ; b; c; and d for which

a+ b = 3cd

c+ d = 3ab

Example. Find a triangle having rational sides with area 5. Alter-
natively, ¯nd a right triangle with rational sides such that the sum
of its area and perimeter is a given value.

Problems of these types can be prodigiously challenging to solve,
even with modern symbolism. Moreover, the use of a purely rhetor-
ical system can only make them more di±cult. A good number of
mathematicians, high on our lists of the truly great, are remembered
partly if not exclusively due to their genius at solving indeterminate
problems and proving theorems about them.

3.1 Symbolism of Diophantus

? The beginning of symbolism: The unknown (x { to us)

x =
½
³ S ³ 0 invarious editions
y 0S± ®½

x2 := ¢¨

x3 := K¨

x4 := ¢¨¢

x5 := ¢K¨

x6 := K¨K

³x := 1=x

¢¨
x

:= 1=x2

There is no symbol for +. Essentially, the plus operation was the
default. No symbol between variables implies the plus operation.
We also have

¤j := minus
±
M := units
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An example:

K¨®¢¨i° ³"
±
M ¯ = x3 + 13x3 + 5x+ 2

More examples:

K¨® ³´ ¤j¢¨"
±
M ® =x3 ¡ 5x2 + 8x¡ 1

¢¨i"¤j ±
M ¸µ = 15x2 ¡ 39

Note that in the ¯rst example above Diophantus collects the neg-
ative terms so that what was written corresponds literally to x3 +
8x ¡ (5x2 + 1). Diophantus introduced su±cient symbolism to be-
come well aware of the laws of exponents, which is relatively simple
to perceive from modern notation.

3.2 The methods and ground rules of Diophantus

The types of solutions.

² No solutions are accepted other than positive rational numbers.
² Excluded are negative numbers and surds3, and imaginary num-
bers. For examples, Diophantus would describe 4 = 4x + 20
as absurd because the solution x = ¡4. Neither would the
solution of x2+1 = 0 be permitted, as the roots are imaginary.

The types of equations:

² (A) Determinate equations { single variable.
² (B) Indeterminate equations { two or more unknowns. Here
there is a weakness in notation.

3A number that is can be obtained from rational numbers by a finite number of additions, multiplications,
divisions, and root extractions is called a surd. An irrational number of the form !

p
a in which a is rational

is called a pure surd of index n. For n = 2 the surd is quadratic. Surds that are not pure are called mixed.
Geometrically, surds are all constructable numbers on the basis of a compass and straight edge.
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3.3 Some examples

General form for intermediate equations of the second degree:

Ax2 +Bx+ C = y2 { single equation
x+ y = m
x2 + y2 = n

{ two variables

(1) The single equation: Ax2 +Bx+ C = y2

Case (i) A = C = 0
A = 0

Bx = y2

Bx+ C = y2

¾ Soln. Take
y2 = m2 and
solve

Case (ii) C = 0 Ax2 +Bx = y2
Soln. Take
y = m

n
x

Case (iii) B = 0 Ax2 + C = y2

(®) A = a2 : a2x2 + c = (ax§m)2 ! x = §C¡m2

2ma

(¯) C = c2 : Ax+ c2 = (mx§ c)2 ! x = § 2mc
A¡m2

Case (iv) Ax2 +Bx+ C = y2

(2) Double equations:

mx2 + ®x+ a = u2

nx2 + ¯x+ b = w2

² Simplest case:

®x+ a = u2

¯x+ b = w2

To add the same number to two given numbers so as to make
each a square.

Diophantus gives two complex solutions, the second assuming
a = b = n2.
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? Other examples from Book II:

x2 + y = u2; y2 + x = v2

(Assume y = 2mx+m2, and one equation is satis¯ed.)

x2 ¡ y = u2; y2 ¡ x = v2
x2 + (x+ y) = u2; y2 + (x+ y) = v2

(x+ y)2 + x = u2; (x+ y)2 + y = v2

y2 ¡ z = u2; z2 ¡ x = v2; x2 ¡ y = w2

Solve.

x+ a = u2

x+ b = v2

Solution.
a¡ b = u2 ¡ v2 = (u¡ v)(u+ v)

Select

u¡ v = a¡ b
u+ v = 1:

Solve for u; v. Hope x comes out to be plus. Else factor di®erently.

Example. Solve

x+ 3 = u2

x+ 2 = v2

1 = u2 ¡ v2 = (u¡ v)(u+ v) = 1
4
£ 4:

Take

u¡ v = 1=4
u+ v = 4

2u = 17=4! u = 17=8

2v = 15=4! v = 15=8

! x = 97=64:
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Note: The factorization 1
2
£ 2 above yields a negative x.

? From Book III come the quadratic systems.

(x+ y + z)2 ¡ x2 = u2; (x+ y + z)2 ¡ y2 = v2;
(x+ y + z)2 ¡ z2 = w2

and

x+ y + z = t2; y + z ¡ x = u2;
z + x¡ y = v2; x+ y ¡ z = w2

and

yz + x2 = u2; zx+ y2 = v2;

xy + z2 = w2

? From Book IV come the examples.

x2 + y2 + z2 = (x2 ¡ y2) + (y2 ¡ z2) + (x2 ¡ z2)
x2 + y2 + z2 + w2 ¡ (x+ y + z + w) = a

and the quadratic type system

x2 + y = u2 x+ y = u

x2 + y = u x+ y = u2

? From Book IV we also have the cubic type systems

x2y = u; xy = u3

and

x3 + y2 = u3; z2 + y2 = v2

x3 + y3 = x+ y

Example. Solve x3 + y = (x+ y)3.
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Solution. (Method of False Position.) Assume x = 2y. Thus

8y3 + y = (3y)3 = 27y3

y = 19y3

19y2 = 1

But 19 is not a square!! Retracing steps, note that 19 = 33 ¡ 23,
and 3 comes from the assumption x = 2y. Hence, we need to ¯nd
two consecutive numbers such that the di®erence of their cubes is
a square. That is, we will take x = zy, where z is chosen so that
(z + 1)3 ¡ z3 is a perfect square. Thus,

(z + 1)3 ¡ z3 = 3z2 + 3z + 1 ´ (1¡ 2z)2
1 + 4z2 ¡ 4z

Or

z2 ¡ 7z = 0
z(z ¡ 7) = 0:

So
z = 7:

Take x = 7y. It follows that 343y3+y = (8y)3, or 169y2 = 1. Hence
y = 1=13 and x = 7=13.

3.4 Other Problems

The Method of Limits It is desired to ¯nd a power xn between two
given numbers a and b.

To solve this problem Diophantus multiplies a and b by
powers 2n; 3n; : : : until some nth power, cn lies between
apn and bpn. Then he sets x = c=p as it is easily seen that
xn = cn=pn lies between a and b.

More Method of Limits. Divide a number into a sum of squares
each one of which satis¯es some property.

Example 1. Divide 13 into the sum of two squares, each of which is
greater than 6.
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Example 2. Divide 10 into the sum of three squares, each of which
is greater than 3.

The work of Diophantus has attracted mathematicians for the
last two millenia. No diminution of e®ort has occurred. Indeed,
solving polynomial equations for integer solutions is now a major
area of mathematics usually included within analytic number the-
ory, with countless applications. It includes some of the deepest
and most di±cult mathematics being done today. For example, the
so-called \Fermat's last theorem" is among the many Diophantine
equations whose solutions were extraordinarily di±cult to decide.

4 Modern Diophantine Equations.

Definitions. A polynomial Diophantine equation is an equation of
the form

(1) P (x1; x2; : : : ; xm) = 0

where m 2 Z+ and P 2 Z[x1; x2; : : : ; xm], i.e. P is a polynomial
with integer coe±cients. The xi, i = 1; : : : ;m are assumed to be
integers. If P (a1; a2; : : : ; am) = 0 for ai 2 Z, i = 1; : : : ;m, we say
that (a1 : : : am) is a solution of (1).

Examples.

y3 = x2 + 999 Solution: (1,10)

x21 + x
2
2 + x

2
3 = 7 no solutions

There are two types of questions normally asked: descriptive
and quantitative. Consider the Diophantine equation

x21 + x
2
2 + x

2
3 + x

2
4 = n

The descriptive question asks for a solution in integers for a given
and ¯xed n. The quantitative question asks for the number of solu-
tions.

Here's a typical theorem in the theory of Diophantine Equa-
tions.
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Theorem. If a; b; c; d and e are not zero and not all of the same sign,
there exist integral solutions, not all zero, of

ax2 + by2 + cz2 + du2 + ev2 = 0:

However, the same theorem for

ax2 + by2 + cz2 + du2 = 0

must have additional conditions. ( Namely, two of a; b; c; d must not
be even and

1

4
abcd = 5(mod 8)

.

Theorem. If k is any integer, then

k2 = 0 or 1(mod4):

Corollary. For any two integers u and v,

u2 + v2 = 0; 1; or 2(mod4):

Therefore, no integer congruent to 3(mod 4) can be written as the
sum of two squares.

Theorem. (Lagrange) Every positive integer can be written as the
sum of four squares. (Zero is admissible as one of the squares.)

Theorem. If a; b; c have no common factor > 1, all integral solutions
of ax+ by + cz = 0 are given by

x = bk ¡ cn y = cs¡ ak z = an¡ bs;
where s; n, and k are integers.

A famous example. Consider the polynomial

P (x; y; z) = xn + yn ¡ zn:
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If n = 2, solutions of P (x; y; z) = 0 are Pythagorean triples for
which it can be shown that, if primitive, it must have the form

x = m2 ¡ n2 y = 2mn; z = m2 + n2:

If n ¸ 3 Fermat conjectured and in 1995 Andrew Wiles proved
that there can be no integer solutions.

Recall the polynomial:

P (x1; x2; : : : ; xn) = 0:

A. Hilbert (10th problem). \Is there an algorithm for determining
whether or not a given Diophantine equation (polynomial) has a
solution?" (1902)

Answer. No. J. Robinson (1952) Mitijasevi¶c (1970).

B. If we know there is a solution, then we can ¯nd it by applying all
m-tuples and testing them.

C. To ¯nd algorithms for restricted classes of Diophantine equations

yes, n = 1 Greeks n = 3 A. Baker
for n = 2 Gauss

D. Is there an upper bound on the number of solutions? Or are
there an in¯nite number?

Compare: x2 + y2 = z2 and x3 + y3 = z3

Note. The value of finding only some solutions of a fixed Diophantine
equation is usually rather small.

Diophantine approximation The approximation of irrationals by ra-
tionals is one problems characteristic to the ¯eld of Diophantine
approximation. For example, as is well known any irrational ® is
approximable by in¯nitely many rationals h

k
. Thus

j®¡ h
k
j < ²
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has in¯nitely many solutions for every ². But how small can this be
in terms of the rational approximants? Can we have

j®¡ h
k
j < 1

k
²

which means that jk®¡ hj < ². Can we have

j®¡ h
k
j < 1

k2
²

which means that jk® ¡ hj < 1
k
². The answer is contained in the

following theorem.

Theorem. For any irrational ® there exist in¯nitely many rationals
h
k
such that

j®¡ h
k
j < 1p

5k
²:

No number greater than
p
5 can replace the

p
5 above.

For algebraic numbers, there are more general versions of this
theorem pertaining to the zeros of polynomial with integer coe±-
cients.

Another type of result is this:

Theorem. For any irrational ® the numbers ®; 2®; 3®; : : : are uni-
formly distributed modulo 1.

Recall that a sequence ®1; ®2; ®3; : : : is uniformly distributed over
an interval I if for every subinterval J , the number of elements of
the sequence ®1; ®2; : : : ; ®n that are in J , denoted by n(J), satis¯es

lim
n!1

n(J)

n
=
jJ j
jIj

where jJ j is the length of J .


